skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface Enrichment of Polymer-Grafted Nanoparticles in a Miscible Polymer Nanocomposite
We show that the polymer-grafted nanoparticles (NPs) initially welldispersed in a polymer matrix segregate to the free surface of a film upon thermal annealing in the one-phase region of the phase diagram because the grafted polymer has a lower surface energy than the matrix polymer. Using a combination of atomic force microscopy, transmission electron microscopy, and Rutherford backscattering spectrometry, the evolution of the poly(methyl methacrylate)-grafted silica NP (PMMA NP) surface excess in 25/75 wt % PMMA NP/poly(styrene-ranacrylonitrile) films is observed as a function of annealing time at 150 °C (T < TLCST). The temporal growth of the surface excess is interpreted as a competition between entropic contributions, surface energy differences of the constituents, and the Flory−Huggins interaction parameter, χ. For the first time in a miscible polymer nanocomposite mixture, quantitative comparisons of NP surface segregation are made with the predictions of theory derived for analogous polymer blends. These studies provide insight for designing polymer nanocomposite films with advantageous surface properties such as wettability and hardness and motivate the need for developing rigorous models that capture complex polymer nanocomposite phase behaviors.  more » « less
Award ID(s):
1905912 1545884
PAR ID:
10354268
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Macromolecules
ISSN:
0024-9297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer nanocomposite (PNC) films are of interest for many applications including electronics, energy storage, and advanced coatings. In phase-separating PNCs, the interplay between thermodynamic and kinetic factors governs the assembly of polymer-grafted nanoparticles (NPs), which directly influences material properties. Understanding how processing parameters affect the structure-property relationship of PNCs is important for designing advanced materials. This thesis provides insight by investigating a model PNC system of poly(methyl methacrylate)-grafted nanoparticles (PMMA-NPs) embedded in a poly(styrene-ran-acrylonitrile) (SAN) matrix. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was developed to quantify the distribution of NPs within PMMA-NP/SAN films, enabling precise 3D reconstruction of PNC structures. Experimental parameters such as primary ion beam angle and charge compensation were optimized to enhance secondary ion signals and depth resolution. Upon annealing in the twophase region, PMMA-NP/SAN films exhibited phase separation and surface segregation, leading to morphological evolutions characterized by atomic force microscopy (AFM), ToF-SIMS, water contact angle measurements, and transmission electron microscopy. By systematically exploring the effects of film thickness on PNC structures, we found that film thickness-induced confinement reduces lateral phase separation and enhances NP dispersion at the surface. A dimensional crossover from three to two dimensions was observed around 240 nm, below which surface-directed spinodal decomposition is suppressed. As a result of phase separation and surface segregation, six distinct bulk morphologies were identified, allowing for the construction of a morphology map correlating film thickness and annealing time. Among these morphologies, percolated structures were found to improve mechanical properties such as hardness and reduced modulus, as measured using AFM nanoindentation. Notably, interconnected networks show the highest hardness and modulus at both low and high force loadings. Additionally, Marangoni-induced hexagonal honeycomb patterns were observed in spin-coated as-cast PMMA-NP/SAN films. By changing to a less volatile solvent, these defects were eliminated, demonstrating the importance of solvent selection in achieving uniform and high-quality thin films. These findings demonstrate the potential for precise control of surface-enriched and phase-separated microstructures in PNC films through tailoring processing conditions. This thesis advances the understanding of processing-structure-property relationships in PNCs, providing a foundation for designing highly functional materials with broad industrial applications. 
    more » « less
  2. This study investigates Marangoni effect-induced structural changes in spin-coated polymer nanocomposite (PNC) films composed of poly(methyl methacrylate)-grafted silica nanoparticles (NPs) and poly(styrene-ran-acrylonitrile). Films cast from methyl isobutyl ketone (MIBK) solvent exhibit distinct hexagonal honeycomb cells with thickness gradients driven by surface tension variations. Atomic force microscopy reveals protruded ridges and junctions at cell intersections, where NP concentration is the highest. Upon annealing at 155 degrees C, NPs segregate to the surface due to their lower surface energy, and the initially protruding features flatten and eventually form depressed channels while maintaining higher NP density than surrounding areas. Time-of-flight secondary ion mass spectrometry corroborated these findings, highlighting enhanced surface segregation of NPs in MIBK films. These defects can be eliminated using methyl isoamyl ketone (MIAK) as a solvent that produces homogeneous films of uniform thickness. This study highlights the impact of the Marangoni effect on the microstructure and surface properties of PNC films, providing insights for enhancing film quality and performance. 
    more » « less
  3. This study investigates the interplay between film thickness and the surface and internal morphologies in polymer nanocomposite (PNC) films. The PNC is 25 wt.% poly(methyl methacrylate)-grafted silica nanoparticles (NPs) in poly(styrene-ran-acrylonitrile) annealed in the two-phase region. At greatest confinement (120 nm), NP surface density remains constant and lateral phase separation is inhibited upon annealing. For thicker films (240 nm to 1400 nm), surface density increases with time before approaching ca. 740 NP/μm2, consistent with 2D random close packing. Moreover, lateral domain growth exhibits a dimensional crossover as thickness increases from 𝑡 to , consistent with domain coalescence. Water contact angles 1/2 𝑡1/3 decrease upon annealing in agreement with the lateral domain composition. For thickest films (1400 nm to 4000 nm), a morphology map summarizes the distinct internal arrangements of NPs: disordered aggregates, continuous vertical pillars, discrete vertical pillars, isolated domains, and random networks. This study of PNC films provides guidance for controlling surface and bulk structure which can lead to improved barrier, mechanical and transport properties. 
    more » « less
  4. Utilizing metal–organic frameworks (MOFs) as reinforcing fillers for polymer composites is a promising strategy because of the low density, high specific modulus, and tunable aspect ratio (AR). However, it has not been demonstrated for the MOF-reinforced polymer composite using MOFs with high AR and polymer-grafted surface, both of which are extremely important factors for efficient load transfer and favorable particle–matrix interaction. To this end, we designed an MOF–polymer composite system using high AR MOF PCN-222 as the mechanical reinforcer. Moreover, we developed a synthetic route to graft poly(methyl methacrylate) (PMMA) from the surface of PCN-222 through surface-initiated atomic transfer radical polymerization (SI-ATRP). The successful growth of PMMA on the surface of PCN-222 was confirmed via proton nuclear magnetic resonance and infrared spectroscopy. Through thermogravimetric analysis, the grafting density was found to be 0.18 chains/nm2. The grafted polymer molecular weight was controlled ranging from 50.3 to 158 kDa as suggested by size exclusion chromatography. Finally, we fabricated MOF–polymer composite films by the doctor-blading technique and measured the mechanical properties through the tension mode of dynamic mechanical analysis. We found that the mechanical properties of the composites were improved with increasing grafted PMMA molecular weight. The maximum reinforcement, a 114% increase in Young’s modulus at 0.5 wt % MOF loading in comparison to pristine PMMA films, was achieved when the grafted molecular weight was higher than the matrix molecular weight, which was in good agreement with previous literature. Moreover, our composite presents the highest reinforcement measured via Young’s modulus at low weight loading among MOF-reinforced polymer composites due to the high MOF AR and enhanced interface. Our approach offers great potential for lightweight mechanical reinforcement with high AR MOFs and a generalizable grafting-from strategy for porphyrin-based MOFs. 
    more » « less
  5. Abstract Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a versatile surface-sensitive technique for characterizing both hard and soft matter. Its chemical and molecular specificity, high spatial resolution, and superior sensitivity make it an ideal method for depth profiling polymeric systems, including those comprised of both inorganic and organic constituents (i.e., polymer nanocomposites, PNCs). To best utilize ToF-SIMS for characterizing PNCs, experimental conditions must be optimized to minimize challenges such as the matrix effect and charge accumulation. Toward that end, we have successfully used ToF-SIMS with a Xe+ focused ion beam to depth profile silica nanoparticles grafted with poly(methyl methacrylate) (PMMA-NP) in a poly(styrene-ran-acrylonitrile) matrix film by selecting conditions that address charge compensation and the primary incident beam angles. By tracking the sputtered Si+ species and fitting the resultant concentration profile, the diffusion coefficient of PMMA-NP was determined to be D = 2.4 × 10−14 cm2/s. This value of D lies between that measured using Rutherford backscattering spectrometry (6.4 × 10−14 cm2/s) and the value predicted by the Stokes–Einstein model (2.5 × 10−15 cm2/s). With carefully tuned experimental parameters, ToF-SIMS holds great potential for quantitatively characterizing the nanoparticles at the surfaces and interfaces within PNC materials as well as soft matter in general. 
    more » « less