Chiral metamaterials in the mid-infrared wavelength range have tremendous potential for studying thermal emission manipulation and molecular vibration sensing. Here, we present one type of chiral plasmonic metasurface absorber with high circular dichroism (CD) in absorption of more than 0.56 across the mid-infrared wavelength range of 5–5.5 µm. The demonstrated chiral metasurface absorbers exhibit a maximum chiral absorption of 0.87 and a maximum CD in absorption of around 0.60. By adjusting the geometric parameters of the unit cell structure of the metasurface, the chiral absorption peak can be shifted to different wavelengths. Due to the strong chiroptical response, the thermal analysis of the designed chiral metasurface absorber further shows the large temperature difference between the left-handed and right-handed circularly polarized light. The demonstrated results can be utilized in various applications such as molecular detection, mid-infrared filter, thermal emission, and chiral imaging. 
                        more » 
                        « less   
                    
                            
                            Plasmon-phonon coupling between mid-infrared chiral metasurfaces and molecular vibrations
                        
                    
    
            Plasmon-phonon coupling between metamaterials and molecular vibrations provides a new path for studying mid-infrared light-matter interactions and molecular detection. So far, the coupling between the plasmonic resonances of metamaterials and the phonon vibrational modes of molecules has been realized under linearly polarized light. Here, mid-infrared chiral plasmonic metasurfaces with high circular dichroism (CD) in absorption over 0.65 in the frequency range of 50 to 60 THz are demonstrated to strongly interact with the phonon vibrational resonance of polymethyl methacrylate (PMMA) molecules at 52 THz, under both left-handed and right-handed circularly polarized (LCP and RCP) light. The mode splitting features in the absorption spectra of the coupled metasurface-PMMA systems under both circular polarizations are studied in PMMA layers with different thicknesses. The relation between the mode splitting gap and the PMMA thickness is also revealed. The demonstrated results can be applied in areas of chiral molecular sensing, thermal emission, and thermal energy harvesting. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10167418
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 14
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 21192
- Size(s):
- Article No. 21192
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Achiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization. By introducing a PMMA molecule layer on top of the metasurface, which covers the area with large optical chirality, CD in absorption of 0.38 and a dissymmetric factor of optical chiralitygcof 0.16 are obtained. Furthermore, an analysis of the coupled harmonic oscillator model reveals stronger coupling strength between the PMMA layer and the metasurface under RCP incidence, compared to the LCP case. Moreover, it is shown that the far-field CD response of the metasurface is linearly correlated with the dissymmetric near-field optical chirality distribution. The demonstrated results present the potential for advancing applications in chiral molecule vibrational sensing, thermal emission control, and infrared chiral imaging.more » « less
- 
            Abstract More than half of pharmaceutical drugs in use are chiral, necessitating accurate techniques for their characterization. Enantiomers, molecules with mirrored symmetry, often exhibit similar physical traits but possess distinct chemical and biological implications. This study harnesses the strong light‐matter interaction induced by “superchiral” light to perform Surface‐Enhanced Infrared Absorption (SEIRA) induced vibrational circular dichroism measurements in the mid‐infrared spectral region. Utilizing a nanopatterned pixelated array of achiral plasmonic nanostructures, the system allows unique identification of enantiomers and biomolecules. Tunability of plasmon resonance facilitates spectral variation of the optical chirality over a wide infrared range, enabling development of a unique chiral “barcoding” scheme to distinguish chiral molecules based on their infrared fingerprint. This simple, yet robust sensor presents a low‐cost solution for chiral mapping of drugs and biomolecules.more » « less
- 
            Optical phase-change materials exhibit tunable permittivity and switching properties during phase transition, which offers the possibility of dynamic control of optical devices. Here, a wavelength-tunable infrared chiral metasurface integrated with phase-change material GST-225 is demonstrated with the designed unit cell of parallelogram-shaped resonator. By varying the baking time at a temperature above the phase transition temperature of GST-225, the resonance wavelength of the chiral metasurface is tuned in the wavelength range of 2.33 µm to 2.58 µm, while the circular dichroism in absorption is maintained around 0.44. The chiroptical response of the designed metasurface is revealed by analyzing the electromagnetic field and displacement current distributions under left- and right-handed circularly polarized (LCP and RCP) light illumination. Moreover, the photothermal effect is simulated to investigate the large temperature difference in the chiral metasurface under LCP and RCP illumination, which allows for the possibility of circular polarization-controlled phase transition. The presented chiral metasurfaces with phase-change materials offer the potential to facilitate promising applications in the infrared regime, such as chiral thermal switching, infrared imaging, and tunable chiral photonics.more » « less
- 
            Most chiral metamaterials and metasurfaces are designed to operate in a single wavelength band and with a certain circular dichroism (CD) value. Here, mid-infrared chiral metasurface absorbers with selective CD in dual-wavelength bands are designed and demonstrated. The dual-band CD selectivity and tunability in the chiral metasurface absorbers are enabled by the unique design of a unit cell with two coupled rectangular bars. It is shown that the sign of CD in each wavelength band can be independently controlled and flipped by simply adjusting the geometric parameters, the width and the length, of the vertical rectangular bars. The mechanism of the dual-band CD selection in the chiral metasurface absorber is further revealed by studying the electric field and magnetic field distributions of the antibonding and bonding modes supported in the coupled bars under circularly polarized incident light. Furthermore, the chiral resonance wavelength can be continuously increased by scaling up the geometric parameters of the metasurface unit cell. The demonstrated results will contribute to the advance of future mid-infrared applications such as chiral molecular sensing, thermophotovoltaics, and optical communication.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
