skip to main content

This content will become publicly available on November 1, 2022

Title: Size Effect on Structural Strength of Lego Beams
LEGOs are one of the most popular toys and are known to be useful as instructional tools in STEM education. In this work, we used LEGO structures to demonstrate the energetic size effect on structural strength. Many material's fexural strength decreases with increasing structural size. We seek to demonstrate this effect in LEGO beams. Fracture experiments were performed using 3-point bend beams built of 2 X 4 LEGO blocks in a periodic staggered arrangement. LEGO wheels were used as rollers on either ends of the specimens which were weight compensated by adding counterweights. [1] Specimens were loaded by hanging weights at their midspan and the maximum sustained load was recorded. Specimens with a built-in defect (crack) of half specimen height were considered. Beam height was varied from two to 32 LEGO blocks while keeping the in-plane aspect ratio constant. The specimen thickness was kept constant at one LEGO block. Slow-motion videos and sound recordings of fractures were captured to determine how the fracture originated and propagated through the specimen. Flexural stress was calculated based on nominal specimen dimensions and fracture toughness was calculated following ASTM E-399 standard expressions from Srawley (1976). [2] The results demonstrate that the LEGO beams indeed exhibit a size effect on strength. For smaller beams the Uexural strength is higher than for more » larger beams. The dependence of strength on size is similar to that of Bažant’s size effect law [3] . Initiation of failure occurs consistently at the built-in defect. The staggered arrangement causes persistent crack branching which is more pronounced in larger specimens. The results also show that the apparent fracture toughness increases as the specimen size decreases. Further ongoing investigations consider the effects of the initial crack length on the size effect and the fracture response. The present work demonstrates that LEGO structures can serve as an instructional tool. We demonstrate principles of non-linear elastic fracture mechanics and highlight the importance of material microstructure (architecture) in fracture response. The experimental method is reproducible in a classroom setting without the need for complex facilities. This work was partially supported by the National Science Foundation (NSF) under the award #1662177 and the School of Mechanical Engineering at Purdue University. The authors acknowledge the support of Dr. Thomas Siegmund and Glynn Gallaway. [1] Khalilpour, S., BaniAsad, E. and Dehestani, M., 2019. A review on concrete fracture energy and effective parameters. Cement and Concrete research, 120, pp.294-321. [2] Srawley, J.E., 1976, January. Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. In Conf. of Am. Soc. for Testing and Mater., Committee E-24 (No. E-8654). [3] Bažant, Z.P., 1999. Size effect on structural strength: a review. Archive of applied Mechanics, 69(9), pp.703-725. « less
Authors:
;
Award ID(s):
1662177
Publication Date:
NSF-PAR ID:
10317272
Journal Name:
ASME IMECE 2021
Sponsoring Org:
National Science Foundation
More Like this
  1. There are ongoing research efforts directed at addressing strength limitations of compressed earth blocks (CEB) that inhibit their deployment for structural applications, particularly in areas where masonry systems are regularly subjected to lateral loads from high winds. In this paper, the authors focus specifically on the extent to which polypropylene (PP) fibers can be used to enhance the flexural performance of CEB. Cementitious matrices used for CEB production exhibit low tensile and flexural strength (brittle) properties. This work investigates plain (unreinforced) and fiber-reinforced specimens (short flexural beams) with fiber mass content of 0.2, 0.4, 0.6, 0.8, and 1.0% and ordinarymore »Portland cement (OPC) content of 8%. The influence of the inclusion of fiber was based on tests conducted using the Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (ASTM C1609). Material properties that were quantified included first-peak strength, peak strength, equivalent flexural strength, residual strength, and flexural toughness. There was an observed improvement in the performance of the soil-fiber matrixes based on these results of these tests. It was also observed that when the fiber content exceeded 0.6% and above, specimens exhibited a deflection- hardening behavior; an indication of improvement in ductility. An equivalent flexural strength predictive model is proposed.« less
  2. The characteristics of metal and materials are very important to design any component so that it should not fail in the life of the service. The properties of the materials are also an important consideration while setting the manufacturing parameters which deforms the raw material to give the design shape without providing any defect or fracture. For centuries the commonly used method to characterize the material is the traditional uniaxial tension test. The standard has been created for this test by American Standard for Testing Materials (ASTM) – E8. This specimen is traditionally been used to test the materials andmore »extract the properties needed for designing and manufacturing. It should be noted that the uniaxial tension test uses one axis to test the material i.e., the material is pulled in one direction to extract the properties. The data acquired from this test found enough for manufacturing operations of simple forming where one axis stretching is dominant. Recently a sudden increase in the usage of automotive vehicles results in sudden increases in fuel consumption which results in an increase in air pollution. To cope up with this challenge federal government is implying the stricter environmental regulation to decrease air pollution. To save from the environmental regulation penalty vehicle industry is researching innovation which would reduce vehicle weight and decrease fuel consumption. Thus, the innovation related to light-weighting is not only an option anymore but became a mandatory necessity to decrease fuel consumption. To achieve this target, the industry has been looking at fabricating components from high strength to ultra-high strength steels or lightweight materials. This need is driven by the requirement of 54 miles per gallon by 2025. In addition, the complexity in design increased where multiple individual parts are eliminated. This integrated complex part needs the complex manufacturing forming operation as well as the process like warm or hot forming for maximum formability. The complex forming process will induce the multi-axial stress states in the part, which is found difficult to predict using conventional tools like tension test material characterization. In many pieces of literature limiting dome height and bulge tests were suggested analyzing these multi-axial stress states. However, these tests limit the possibilities of applying multi-axial loading and resulting stress patterns due to contact surfaces. Thus, a test machine called biaxial test is devised which would provide the capability to test the specimen in multi-axial stress states with varying load. In this paper, two processes, limiting dome test and biaxial test were experimented to plot the forming limit curve. The forming limit curve serves the tool for the design of die for manufacturing operation. For experiments, the cruciform test specimens were used in both limiting dome test and biaxial test and tested at elevated temperatures. The forming limit curve from both tests was plotted and compared. In addition, the strain path, forming, and formability was investigated and the difference between the tests was provided.« less
  3. Abstract In the standard fracture test specimens, the crack-parallel normal stress is negligible. However, its effect can be strong, as revealed by a new type of experiment, briefly named the gap test. It consists of a simple modification of the standard three-point-bend test whose main idea is to use plastic pads with a near-perfect yield plateau to generate a constant crack-parallel compression and install the end supports with a gap that closes only when the pads yield. This way, the test beam transits from one statically determinate loading configuration to another, making evaluation unambiguous. For concrete, the gap test showedmore »that moderate crack-parallel compressive stress can increase up to 1.8 times the Mode I (opening) fracture energy of concrete, and reduce it to almost zero on approach to the compressive stress limit. To model it, the fracture process zone must be characterized tensorially. We use computer simulations with crack-band microplane model, considering both in-plane and out-of-plane crack-parallel stresses for plain and fiber-reinforced concretes, and anisotropic shale. The results have broad implications for all quasibrittle materials, including shale, fiber composites, coarse ceramics, sea ice, foams, and fone. Except for negligible crack-parallel stress, the line crack models are shown to be inapplicable. Nevertheless, as an approximation ignoring stress tensor history, the crack-parallel stress effect may be introduced parametrically, by a formula. Finally we show that the standard tensorial strength models such as Drucker–Prager cannot reproduce these effects realistically.« less
  4. Design and construction errors and material deterioration can lead to concrete elements being subjected to high levels of sustained stress well exceeding typical service levels. These high levels of sustained stress have led to structural collapses in the United States and around the world. However, the performance of shear-controlled concrete elements (beams and slab-column connections) under high sustained stress is not well understood. Under high sustained compressive stress (greater than 0.75fc’) concrete will suffer tertiary creep characterized by accelerated permanent strain, leading eventually to a failure. The bond of the reinforcing bars to the concrete is also affected leading tomore »slip. This research presents the results of experimental tests on shear-controlled RC beams that were loaded to 81, 86, and 92 percent of their short-term capacity and observed for about four weeks. Deflection and strain measurements were recorded for each specimen throughout the sustained load test. Under high sustained stress the specimens showed continued deflection with time, with most of the deflection occurring shortly after the application of load. The failure of the specimens exhibited more flexural response than that of the control specimen. The test results show that high levels of sustained stress (up to 92% of their short-term capacity) can be sustained for a prolonged time; however, the deflections and cracking are increased and the ultimate failure mode may be changed. This information will help engineers identify elements nearing failure under high levels of sustained stress.« less
  5. Most undergraduate civil engineering programs include an introductory course in reinforced concrete design. The course generally includes an introduction to the fundamentals of reinforced concrete behavior, the design of simple beams and one-way slabs to resist shear and flexure, and the design of short columns. Because of the scale of typical civil engineering structures, students commonly do not get to experience large or full-scale structural behavior as a part of an undergraduate reinforced concrete course. Rather, students typically learn fundamental concepts through theoretical discussions, small demonstrations, or pictures and images. Without the interaction with full-scale structural members, students can strugglemore »to develop a clear understanding of the fundamental behavior of these systems such as the differences in behavior of an over or under-reinforced beam. Additionally, students do not build an appreciation for the variations between as-built versus theoretical designs. Large-scale models can illustrate such behavior and enhance student understanding, but most civil engineering programs lack the physical equipment to perform testing at this scale. The authors from St. Louis University (SLU) and Rose-Hulman Institute of Technology (RHIT) have designed and implemented large-scale tests for in-class use that allow students to experience fundamental reinforced concrete behavior. Students design and test several reinforced concrete members using a modular strong-block testing system. This paper provides a detailed overview of the design, fabrication, and implementation of three large-scale experiential learning modules for an undergraduate reinforced concrete design course. The first module focuses on service load and deflections of a reinforced concrete beam. The first and second modules also focus on flexural failure modes and ductility. The third module focuses on shear design and failure modes. Each module uses a large scale reinforced concrete beam (Flexure specimens: 12 in. x 14 in. x 19 ft, Shear specimens: 12 in. x 14 in. x 10 ft.) that was tested on a modular strong-block testing system. The three modules were used throughout the reinforced concrete design course at SLU and RHIT to illustrate behavior concurrent to the presentation of various reinforced concrete design concepts.« less