skip to main content


Title: Climate control on terrestrial biospheric carbon turnover
Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ( 14 C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14 C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14 C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.  more » « less
Award ID(s):
1755125
NSF-PAR ID:
10317362
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
8
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC) previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate‐driven increases in fire and thermokarst may play a key role in OC mobilization by thawing permafrost and promoting transport of OC. Yet, the extent of OC mobilization and mechanisms controlling terrestrial‐aquatic transfer are unclear. We demonstrate that hydrologic transport of soil dissolved OC (DOC) from the active layer and thawing permafrost to headwater streams is extremely heterogeneous and regulated by the interactions of soils, seasonal thaw, fire, and thermokarst. Repeated sampling of streams in eight headwater catchments of interior Alaska showed that the mean age of DOC for each stream ranges widely from modern to ∼2,000 years B.P. Together, an endmember mixing model and nonlinear, generalized additive models demonstrated that Δ14C‐DOC signature (and mean age) increased from spring to fall, and was proportional to hydrologic contributions from a solute‐rich water source, related to presumed deeper flow paths found predominantly in silty catchments. This relationship was correlated with and mediated by catchment properties. Mean DOC ages were older in catchments with >50% burned area, indicating that fire is also an important explanatory variable. These observations underscore the high heterogeneity in aged C export and difficulty of extrapolating estimates of permafrost‐derived DOC export from watersheds to larger scales. Our results provide the foundation for developing a conceptual model of permafrost DOC export necessary for advancing understanding and prediction of land‐water C exchange in changing boreal landscapes.

     
    more » « less
  2. Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3–12.2) g⋅C⋅m−2⋅y−1from the current rate of 16.1 (9.1–23.7) g⋅C⋅m−2⋅y−1, and the region may turn into a carbon source to the atmosphere at −53.3 (−66.8 to −41.2) g⋅C⋅m−2⋅y−1(negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32–0.52) Pg⋅C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.

     
    more » « less
  3. Understanding the key mechanisms that control northern treelines is important to accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, it has long been observed that elevational and latitudinal treelines occur at similar mean growing season air temperature (GSAT) isotherms, inspiring the growth limitation hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, with mean treeline GSAT ~6-7 degrees celsius (°C). Treelines with mean GSAT warmer than 6-7 °C may indicate other limiting factors. Many treelines globally are not advancing despite warming, and other climate variables are rarely considered at broad scales. Our goals were to test whether current boreal treelines in northern Alaska correspond with the GLH isotherm, determine which environmental factors are most predictive of treeline presence, and to identify areas beyond the current treeline where advance is most likely. We digitized ~12,400 kilometers (km) of treelines (greater than 26K (26,000) points) and computed seasonal climate variables across northern Alaska. We then built a generalized additive model predicting treeline presence to identify key factors determining treeline. Two metrics of mean GSAT at Alaska’s northern treelines were consistently warmer than the 6-7 °C isotherm (means of 8.5 °C and 9.3 °C), indicating that direct physiological limitation from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our final model included cumulative growing degree-days, near-surface (≤ 1 meters (m)) permafrost probability, and growing season total precipitation, which together may represent the importance of soil temperature. Our results indicate that mean GSAT may not be the primary driver of treeline in northern Alaska or that its effect is mediated by other more proximate, and possibly non-climatic, controls. Our model predicts treeline potential in several areas beyond current treelines, pointing to possible routes of treeline advance if unconstrained by non-climatic factors. 
    more » « less
  4. Understanding the key mechanisms that control northern treelines is important to accurately predict biome shifts and terrestrial feedbacks to climate. At a global scale, it has long been observed that elevational and latitudinal treelines occur at similar mean growing season air temperature (GSAT) isotherms, inspiring the growth limitation hypothesis (GLH) that cold GSAT limits aboveground growth of treeline trees, with mean treeline GSAT ~6-7 degrees celsius (°C). Treelines with mean GSAT warmer than 6-7 °C may indicate other limiting factors. Many treelines globally are not advancing despite warming, and other climate variables are rarely considered at broad scales. Our goals were to test whether current boreal treelines in northern Alaska correspond with the GLH isotherm, determine which environmental factors are most predictive of treeline presence, and to identify areas beyond the current treeline where advance is most likely. We digitized ~12,400 kilometers (km) of treelines (greater than 26K points) and computed seasonal climate variables across northern Alaska. We then built a generalized additive model predicting treeline presence to identify key factors determining treeline. Two metrics of mean GSAT at Alaska’s northern treelines were consistently warmer than the 6-7 °C isotherm (means of 8.5 °C and 9.3 °C), indicating that direct physiological limitation from low GSAT is unlikely to explain the position of treelines in northern Alaska. Our final model included cumulative growing degree-days, near-surface (≤ 1 meters (m)) permafrost probability, and growing season total precipitation, which together may represent the importance of soil temperature. Our results indicate that mean GSAT may not be the primary driver of treeline in northern Alaska or that its effect is mediated by other more proximate, and possibly non-climatic, controls. Our model predicts treeline potential in several areas beyond current treelines, pointing to possible routes of treeline advance if unconstrained by non-climatic factors. 
    more » « less
  5. Abstract

    Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate.

     
    more » « less