Abstract Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC) previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate‐driven increases in fire and thermokarst may play a key role in OC mobilization by thawing permafrost and promoting transport of OC. Yet, the extent of OC mobilization and mechanisms controlling terrestrial‐aquatic transfer are unclear. We demonstrate that hydrologic transport of soil dissolved OC (DOC) from the active layer and thawing permafrost to headwater streams is extremely heterogeneous and regulated by the interactions of soils, seasonal thaw, fire, and thermokarst. Repeated sampling of streams in eight headwater catchments of interior Alaska showed that the mean age of DOC for each stream ranges widely from modern to ∼2,000 years B.P. Together, an endmember mixing model and nonlinear, generalized additive models demonstrated that Δ14C‐DOC signature (and mean age) increased from spring to fall, and was proportional to hydrologic contributions from a solute‐rich water source, related to presumed deeper flow paths found predominantly in silty catchments. This relationship was correlated with and mediated by catchment properties. Mean DOC ages were older in catchments with >50% burned area, indicating that fire is also an important explanatory variable. These observations underscore the high heterogeneity in aged C export and difficulty of extrapolating estimates of permafrost‐derived DOC export from watersheds to larger scales. Our results provide the foundation for developing a conceptual model of permafrost DOC export necessary for advancing understanding and prediction of land‐water C exchange in changing boreal landscapes.
more »
« less
Climate control on terrestrial biospheric carbon turnover
Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon ( 14 C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14 C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14 C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
more »
« less
- Award ID(s):
- 1755125
- PAR ID:
- 10317362
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 8
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wymore, A.S. (Ed.)The loss of organic carbon (OC) from soils because of agriculture is well established. Where that carbon goes, far less so. Accelerated oxidation could lead to a net source of CO2 to the atmosphere. However eroded soil OC sequestered in alluvia and reservoirs could create a net sink for atmospheric CO2. The Intensively Managed Landscape—Critical Zone Observatory (IML-CZO) has provided an opportunity to study the fate of the eroded soil OC. A preliminary inventory of post-settlement sediment and associated OC accumulation has been made in the IML-CZO site in the Sangamon River Basin of Illinois. Significant stores of OC were found in downslope depressions, floodplain sedimentary deposits and a reservoir at the terminus of the Upper Sangamon Basin, Lake Decatur. Approximately 90% of the OC was trapped by the landscape. Carbon isotopic (δ13C) measurements of bank exposures and Lake Decatur sediments indicate that row crop soils with corn (C4 plant) isotopic signatures contribute to the sequestered C pools but are not the sole sources of OC. C-isotope and biomarker measurements of Lake Decatur sediments reveal the episodic nature of row crop soil OC transport, which appears to be facilitated by sequences of storm events.more » « less
-
Radiocarbon ages and thermal stability measurements can be used to estimate the stability of soil organic carbon (OC). Soil OC is a complex reservoir that contains a range of compounds with different sources, reactivities, and residence times. This heterogeneity can shift bulk radiocarbon values and impact assessment of OC stability and turnover in soils. Four soil horizons (Oa, Bhs, Bs, Bg) were sampled from highly weathered 350 ka Pololu basaltic volcanics on the Island of Hawaii and analyzed by Ramped PyrOX (RPO) in both the pyrolysis (PY) and oxidation (OX) modes to separate a complex mixture of OC into thermally defined fractions. Fractions were characterized for carbon stable isotope and radiocarbon composition. PY and OX modes yielded similar results. Bulk radiocarbon measurements were modern in the Oa horizon (Fm = 1.013) and got progressively older with depth: the Bg horizon had an Fm value of 0.73. Activation energy distributions (p(E)) calculated using the ‘rampedpyrox’ model yielded consistent mean E values of 140 kJ mol-1 below the Oa horizon. The ‘rampedpyrox’ model outputs showed a mostly bimodal distribution in the p(E) below the Oa, with a primary peak at 135 kJ mol-1 and a secondary peak at 148 kJ mol-1, while the Oa was dominated by a single, higher E peak at 157 kJ mol-1. We suggest that mineral-carbon interaction, either through mineral surface-OC or metal-OC interactions, is the stabilization mechanism contributing to the observed mean E of 140 kJ mol-1 below the Oa horizon. In the Oa horizon, within individual RPO analyses, radiocarbon ages in the individual thermal fractions were indistinguishable (p[0.1). The flat age distributions indicate there is no relationship between age and thermal stability (E) in the upper horizon ([25 cm). Deeper in the soil profile higher lEf values were associated with older radiocarbon ages, with slopes progressively steepening with depth. In the deepest (Bg) horizon, there was the largest, yet modest change in Fm of 0.06 (626 radiocarbon years), indicating that older OC is slightly more thermally stable.more » « less
-
Abstract Lateral transport of organic carbon (OC) to the coastal ocean is an important component of the global carbon cycle because rivers transport, mineralize, and bury significant amounts of OC. Glaciers drive water and sediment export from many high‐elevation and high‐latitude ecosystems, yet their role in watershed OC balances is poorly understood, particularly with regard to particulate OC. Here, we evaluate seasonal water, sediment, and comprehensive OC budgets, including both dissolved and particulate forms, for three watersheds in southeast Alaska that vary in glacier coverage. We show that glacier loss will shift the dominant size fraction of riverine OC from particulate toward dissolved and potentially alter the provenance of particulate OC. Glacier coverage also controls whether OC export is source (C stock) or transport (runoff) limited at the watershed scale. These findings provide insight into the future trajectory of riverine OC export in glacierized regions.more » « less
-
null (Ed.)Abstract Variation in soil organic C (%OC) concentration has been associated with the concentration of reactive Fe- and Al-oxyhydroxide phases and exchangeable Ca, with the relative importance of these two stabilizing components shifting as soil pH moves from acid to alkaline. However, it is currently unknown if this pattern is similar or different with regard to measures of soil C persistence. We sampled soils from 3 horizons (uppermost A, uppermost B, C or lowest B horizons) across a pH gradient of 11 grass-dominated and 13 deciduous/mixed forest-dominated NEON sites to examine similarities and differences in the drivers of C concentration and persistence. Variation in C concentrations in all soils could be linked to abundances of Fe, Al and Ca, but were not significantly linked to variation in soil C persistence. Though pH was related to variation in Δ 14 OC, higher persistence was associated with more alkaline pH values. In forested soils, depth explained 75% of the variation in Δ 14 OC ( p < 0.0001), with no significant additional correlations with extractable metal phases. In grasslands, soil organic C persistence was not associated with exchangeable Ca concentrations, but instead was explained by depth and inorganic C concentrations (R 2 = 0.76, p < 0.0001), implying stabilization of organic C through association with carbonate precipitation. In grasslands, measures of substrate quality suggested greater persistence is also associated with a more advanced degree of decomposition. Results suggest that explanatory variables associated with C concentrations differ from those associated with persistence, and that reactive Fe- and Al-oxyhydroxide phases may not be present in high enough concentrations in most soils to offer any significant protective capacity. These results have significant implications for our understanding of how to model the soil C cycle and may suggest previously unrecognized stabilization mechanisms associated with carbonates and forms of extractable Si.more » « less