skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Harmful algal blooms and cyanotoxins in Lake Amatitlán, Guatemala, coincided with ancient Maya occupation in the watershed
Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa . Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya.  more » « less
Award ID(s):
1755125 1830723
PAR ID:
10317472
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
48
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beisner, Beatrix E (Ed.)
    Abstract Freshwater ecosystems are increasingly at risk of experiencing toxin-producing cyanobacterial blooms during the winter due to anthropogenic nutrient loading and climate change. However, understanding how increased light, temperature and nutrient levels impact cyanotoxin production during the winter is limited, as most research has historically focused on blooms during the summer and fall. We conducted 2 × 2 × 2 incubation experiments in February and March to test the individual and interactive effects of light intensity (50 and 150 μmol m−2 s−1 PAR), elevated temperature (+3°C), and nitrogen and phosphorus enrichment on microcystin concentrations in a Planktothrix agardhii-dominated community sampled from Grand Lake Saint Mary’s, a hypereutrophic Ohio reservoir. Microcystin concentration significantly increased with elevated temperature in both months. In February, low light also promoted higher microcystin concentrations, particularly when combined with elevated temperature and nutrient enrichment. In March, nutrient enrichment had individual and interactive effects with temperature that caused higher microcystin concentrations. These results demonstrate that toxin-producing cyanobacteria are active in winter and that climate-driven changes in environmental conditions can interactively increase total toxin concentrations in the water column, even in the non-growing season. 
    more » « less
  2. Excavations in the spring and summer of 2022 were carried out at the underwater ancient Maya salt work of Ek Way Nal in Punta Ycacos Lagoon, Paynes Creek National Park, Belize. Ek Way Nal provided salt to the ancient Maya during the Late and Terminal Classic periods (600-900 C.E.). In additional to excavations in buildings at the site, a 1 X 2 m unit was excavated to extract a sediment column for examining the relationship between the ancient Maya settlement at Ek Way Nal and sea-level rise. In this article, the excavations, extraction of the sediment column, and processing it for laboratory analyses are described. Field observations are discussed. Fine red mangrove root (Rhizophora mangle) and charcoal samples were extracted from the sediment column for radiocarbon dating. The results from the datum core excavation indicate that sea-level rise occurred before, during, and after the ancient Maya occupation at Ek Way Nal. 
    more » « less
  3. Abstract The Faroe Islands, a North Atlantic archipelago between Norway and Iceland, were settled by Viking explorers in the mid-9th century CE. However, several indirect lines of evidence suggest earlier occupation of the Faroes by people from the British Isles. Here, we present sedimentary ancient DNA and molecular fecal biomarker evidence from a lake sediment core proximal to a prominent archaeological site in the Faroe Islands to establish the earliest date for the arrival of people in the watershed. Our results reveal an increase in fecal biomarker concentrations and the first appearance of sheep DNA at 500 CE (95% confidence interval 370-610 CE), pre-dating Norse settlements by 300 years. Sedimentary plant DNA indicates an increase in grasses and the disappearance of woody plants, likely due to livestock grazing. This provides unequivocal evidence for human arrival and livestock disturbance in the Faroe Islands centuries before Viking settlement in the 9th century. 
    more » « less
  4. Guangjie Chen (Ed.)
    Abstract Hypereutrophic conditions in lake ecosystems are generally associated with nutrient inputs from surrounding terrestrial landscapes. However, some systems can receive primary nutrient inputs through hydrologic connections such as rivers or canals. Lake Carlton, Florida, USA is a small, shallow, polymictic lake that ends a hydrologically connected string of lacustrine systems with hypereutrophic lakes Beauclair and Apopka. Lake Beauclair and Lake Apopka were connected hydrologically when a system of canals was constructed beginning in 1893 CE. These lakes have maintained hypereutrophic conditions despite extensive management to reduce nutrient inputs. Here, we collected a sediment core from Lake Carlton to accomplish two primary research objectives: 1) reconstruct the nutrient input for Lake Carlton throughout the last ~ 150 years to conduct source assessment, and 2) link primary producer changes with management actions between lakes Apopka, Beauclair, and Carlton. Paleolimnological tools were applied to a 165-cm sediment core and analyzed for bulk density, organic matter content, nutrients (C, N, P), photosynthetic pigments, and total microcystins. Sediments were dated using210Pb and results indicate that the core represents over 150 years of sediment accumulation. Sedimentary nutrient concentrations show that the primary driver of nutrient inputs resulted from canal construction, beginning in 1893 CE, which corresponded to increased nutrient deposition. Photosynthetic pigment data indicate dramatic increases in most primary producer groups coinciding with the hydrologic modification. However, around ~ 1970 CE, primary producer communities shifted from diatom dominance to cyanobacterial dominance, which appeared to be linked to internal nutrient dynamics and competition among phytoplankters within the lake ecosystem. Cyanotoxin production records show a significant lag between cyanobacterial dominance and peak cyanotoxin production with toxins increasing in the last 30 years. These data demonstrate that local nutrient inputs do not govern all phytoplankton dynamics in shallow lake systems but must be interpreted considering hydrologic alterations and management practices. 
    more » « less
  5. null (Ed.)
    Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed. 
    more » « less