Highly-resolved, direct numerical simulations of turbulent channel flows with sub-
Kolmogorov grid resolution are performed to investigate the characteristics of wall-bounded turbulent flows in the presence of sinusoidal wall waviness. The wall waviness serves as a simplified model to study the effects of well-defined geometric parameters of roughness on the characteristics of wall-bounded turbulent flows. In this study, a two-dimensional wave profile with steepness ranging from 0.06 to 0.25 and wave amplitudes ranging from 9 to 36 wall units were considered. For the smooth and wavy-wall simulations, the Reynolds number based on the friction velocity was kept constant. To study the effects of wave amplitude and wavelength on turbulence, two-dimensional time and spanwise averaged distributions of the mean flow, turbulent kinetic energy, and Reynolds stresses as well as turbulent kinetic energy production and dissipation are examined. Furthermore, in order to provide a more direct comparison
with the smooth-wall turbulent channel flow one-dimensional pro- files of these quantities are computed by averaging them over one wavelength of the wave profile. A strong effect of the wall-waviness and, in particular, the wave amplitude and wavelength on the characteristics of the turbulence was obtained. Wall waviness mainly affected the inner flow region while all recorded turbulent statistics collapsed in the outer flow region. Significant reductions in turbulent kinetic energy, production and dissipation were obtained with increasing wave amplitudes when reported in inner scale. While production is lower for all wavy wall cases considered here in comparison to the smooth wall, reducing the wavelength caused an increase in production and a decrease in dissipation.
more »
« less
Amplitude and wavelength scaling of sinusoidal roughness effects in turbulent channel flow at fixed
Direct numerical simulations are performed for incompressible, turbulent channel flow over a smooth wall and different sinusoidal wall roughness configurations at a constant $Re_\tau = 720$ . Sinusoidal walls are used to study the effects of well-defined geometric features of roughness-amplitude, $a$ , and wavelength, $\lambda$ , on the flow. The flow in the near-wall region is strongly influenced by both $a$ and $\lambda$ . Establishing appropriate scaling laws will aid in understanding the effects of roughness and identifying the relevant physical mechanisms. Using inner variables and the roughness function to scale the flow quantities provides support for Townsend's hypothesis, but inner scaling is unable to capture the flow physics in the near-wall region. We provide modified scaling relations considering the dynamics of the shear layer and its interaction with the roughness. Although not a particularly surprising observation, this study provides clear evidence of the dependence of flow features on both $a$ and $\lambda$ . With these relations, we are able to collapse and/or align peaks for some flow quantities and, thus, capture the effects of surface roughness on turbulent flows even in the near-wall region. The shear-layer scaling supports the hypothesis that the physical mechanisms responsible for turbulent kinetic energy production in turbulent flows over rough walls are greatly influenced by the shear layer and its interaction with the roughness elements. Finally, a semiempirical model is developed to predict the contribution of pressure and skin friction drag on the roughness element based purely on its geometric parameters and the corresponding shear-layer velocity scale.
more »
« less
- Award ID(s):
- 1706346
- NSF-PAR ID:
- 10317509
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 937
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The asymptotic behaviour of Reynolds stresses close to walls is well established in incompressible flows owing to the constraint imposed by the solenoidal nature of the velocity field. For compressible flows, thus, one may expect a different asymptotic behaviour, which has indeed been noted in the literature. However, the transition from incompressible to compressible scaling, as well as the limiting behaviour for the latter, is largely unknown. Thus, we investigate the effects of compressibility on the near-wall, asymptotic behaviour of turbulent fluxes using a large direct numerical simulation (DNS) database of turbulent channel flow at higher than usual wall-normal resolutions. We vary the Mach number at a constant friction Reynolds number to directly assess compressibility effects. We observe that the near-wall asymptotic behaviour for compressible turbulent flow is different from the corresponding incompressible flow even if the mean density variations are taken into account and semi-local scalings are used. For Mach numbers near the incompressible regimes, the near-wall asymptotic behaviour follows the well-known theoretical behaviour. When the Mach number is increased, turbulent fluxes containing wall-normal components show a decrease in the slope owing to increased dilatation effects. We observe that $R_{vv}$ approaches its high-Mach-number asymptote at a lower Mach number than that required for the other fluxes. We also introduce a transition distance from the wall at which turbulent fluxes exhibit a change in scaling exponents. Implications for wall models are briefly presented.more » « less
-
Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events.more » « less
-
null (Ed.)Dimensional analysis suggests that the dissipation length scale ( $\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $u_{\star }$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $\ell _{{\it\epsilon}}$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here ${\it\epsilon}$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $r/\ell _{{\it\epsilon}}$ ), where $r$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $r/\ell _{{\it\epsilon}}$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $\ell _{{\it\epsilon}}$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $\ell _{{\it\epsilon}}$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales.more » « less
-
Motivated by the need for accurate determination of wall shear stress from profile measurements in turbulent boundary layer flows, the total shear stress balance is analysed and reformulated using several well-established semi-empirical relations. The analysis highlights the significant effect that small pressure gradients can have on parameters deduced from data even in nominally zero pressure gradient boundary layers. Using the comprehensive shear stress balance together with the log-law equation, it is shown that friction velocity, roughness length and zero-plane displacement can be determined with only velocity and turbulent shear stress profile measurements at a single streamwise location for nominally zero pressure gradient turbulent boundary layers. Application of the proposed analysis to turbulent smooth- and rough-wall experimental data shows that the friction velocity is determined with accuracy comparable to force balances (approximately 1 %–4 %). Additionally, application to boundary layer data from previous studies provides clear evidence that the often cited discrepancy between directly measured friction velocities (e.g. using force balances) and those derived from traditional total shear stress methods is likely due to the small favourable pressure gradient imposed by a fixed cross-section facility. The proposed comprehensive shear stress analysis can account for these small pressure gradients and allows more accurate boundary layer wall shear stress or friction velocity determination using commonly available mean velocity and shear stress profile data from a single streamwise location.more » « less