skip to main content


Title: Assessment of the Elliptic Blending Reynolds Stress Model for a Rotating Turbulent Pipe Flow Using New DNS Data
New direct numerical simulation data of a fully-developed axially rotating pipe at Re = 5300 and Re = 19, 000 is used to examine the performance of the second-moment closure elliptic blending Reynolds stress model for a range of rotation rates from N=0 to N=3. In agreement with previous studies (using alternative second-moment closure models), the turbulence suppression observed by the DNS is over-predicted. This over-prediction is greatest at Re = 5, 300 and most noticeable in the poor prediction of the ut wt turbulent shear-stress component. At N=3 the flow is completely relaminarized in contrast to the DNS that is only partly relaminarized. The accuracy of the second-moment closure model is superior to the two-equation k − ω SST model which predicts pure solid-body rotation, however, both are equally poor at the highest rotation rates. The accuracy of each model is also assessed for the initial portion of a rotating pipe where in contrast to the fully- developed rotating pipe flow the turbulent suppression is under-predicted compared to the DNS. It is clear that greater work is required to understand the root cause of the poor prediction by these second-moment closure models and further DNS and experimental work is underway to assist this effort.  more » « less
Award ID(s):
1706346
NSF-PAR ID:
10317510
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIAA Aviation Forum and Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In past experiments, simulations and theoretical analysis, rotation has been shown to dramatically effect the characteristics of turbulent flows, such as causing the mean velocity profile to appear laminar, leading to an overall drag reduction, as well as affecting the Reynolds stress tensor. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. For this flow, the rotation of the pipe causes a region of turbulence suppression which is particularly sensitive to the rotation rate and Reynolds number. The physical mechanisms causing turbulence suppression are currently not well-understood, and a deeper understanding of these mechanisms is of great value for many practical examples involving swirling or rotating flows, such as swirl generators, wing-tip vortices, axial compressors, hurricanes, etc. In this work, Direct Numerical Simulations (DNS) of rotating turbulent pipe flows are conducted at moderate Reynolds numbers (Re=5300, 11,700, and 19,000) and rotation numbers of N=0 to 3. The main objectives of this work are to firstly quantify turbulence suppression for rotating turbulent pipe flows at different Reynolds numbers as well as study the effects of rotation on turbulence by analyzing the characteristics of the Reynolds stress tensor and the production and dissipation terms of the turbulence budgets. 
    more » « less
  2. Rotating and swirling turbulence comprises an important class of flows, not only due to the complex physics that occur, but also due to their relevance to many engineering applications, such as combustion, cyclone separation, mixing, etc. In these types of flows, rotation strongly affects the characteristics and structure of turbulence. However, the underlying turbulent flow phenomena are complex and currently not well understood. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. By examining the complex interaction of turbulent structures within rotating turbulent pipe flow, insight can be gained into the behavior of rotating flows relevant to engineering applications. Direct numerical simulations are conducted at a bulk Reynolds number up to Re_D = 19,000 with rotation numbers ranging from N = 0 to 3. Coherence analysis, including Proper Orthogonal Decomposition and Dynamic Mode Decomposition, are used to identify the relevant (highest energy) modes of the flow. Studying the influence of these modes on turbulent statistics (i.e. mean statistics, Reynolds stresses, turbulent kinetic energy, and turbulent kinetic energy budgets) allow for a deeper understanding of the effects of coherent turbulent flow structures in rotating flows. 
    more » « less
  3. Direct numerical simulations (DNS) of the full-scale axisymmetric nozzle of a Mach 8 wind tunnel are conducted with an emphasis on characterizing the properties of the pressure fluctua- tions induced by the turbulent boundary layer (TBL) along the nozzle wall. The axisymmetric nozzle geometry and the flow conditions of the DNS match those of the Sandia Hypersonic Wind Tunnel at Mach 8. The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate’s correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The wall-pressure intensity, power spectral density, and coherence predicted by DNS show good comparisons with those measured in the same tunnel. The Corcos model is found to deliver good prediction of wall pressure coherence over inter- mediate and high frequencies. The streamwise and spanwise decay constants at Mach 8 are similar to those predicted by DNS and experiments at lower supersonic Mach numbers. 
    more » « less
  4. The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars. 
    more » « less
  5. This work aims at comparing the accuracy and overall performance of a low-Mach CFD solver and a fully-compressible CFD solver for direct numerical simulation (DNS) of nonequilibrium plasma assisted ignition (PAI) using a phenomenological model described in Castela et al. [1]. The phenomenological model describes the impact of nanosecond pulsed plasma discharges by introducing source terms in the reacting flow equations, instead of solving the detailed plasma kinetics at every time step of the discharge. Ultra-fast gas heating and dissociation ofO2 are attributed to the electronic excitation ofN2 and the subsequent quenching to ground state. This process is highly exothermic, and is responsible for dissociation of O2 to form O radicals; both of which promote faster ignition. Another relatively slower process of gas heating associated with vibrational-to-translational relaxation is also accounted for, by solving an additional vibrational energy transport equation. A fully-compressible CFD solver for high Mach (M>0.2) reacting flows, developed by extending the default rhoCentralFoam solver in OpenFOAM, is used to perform DNS of PAI in a 2D domain representing a cross section of a pin-to-pin plasma discharge configuration. The same case is also simulated using a low-Mach, pressure-based CFD solver, built by extending the default reactingFoam solver. The lack of flow or wave dominated transport after the plasma-induced weak shock wave leaves the domain causes inaccurate computation of all the transport variables, with a rather small time step dictated by the CFL condition, with the fully-compressible solver. These issues are not encountered in the low-Mach solver. Finally, the low-Mach solver is used to perform DNS of PAI in lean, premixed, isotropic turbulent mixtures of CH4-air at two different Reynolds numbers of 44 and 395. Local convection of the radicals and vibrational energy from the discharge domain, and straining of the high temperature reaction zones resulted in slower ignition of the case with the higher Re. A cascade effect of temperature reduction in the more turbulent case also resulted in a five - six times smaller value of the vibrational to translational gas heating source term, which further inhibited ignition. Two pulses were sufficient for ignition of the Re = 44 case, whereas three pulses were required for the Re = 395 case; consistent with the results of Ref. [1]. 
    more » « less