skip to main content


Title: Investigating the Aeroacoustic Properties of Porous Fabrics
The aeroacoustic properties of porous fabrics are investigated experimentally with the goal of finding a fabric that serves as an improved interface between wind tunnel flow and quiescent conditions. A total number of eight porous fabrics were investigated, namely, four glass fiber fabrics, two plain-weave Kevlar fabrics, and two modified plain Kevlar fabrics with their pores irregularly clogged. Two custom-made rigs were used to quantify the transmission loss (TL) and self-noise of all fabrics. The pores were found to serve as a low-resistance gateway for sound to pass through, hence enabling a low TL. The TL was found to increase with decreasing open area ratio (OAR), whereas other fabric properties had a minor impact on TL. The thread density was found to be a primary factor in determining the frequency range of porous fabrics’ self-noise, with the OAR potentially playing a secondary role in the self-noise levels. Fabrics with irregular pore distribution showed a more broadband self-noise signature associated with lower frequencies compared to fabrics with periodic pore patterns. Overall, fabrics with an irregular pore distribution or fabrics with increased thread density were identified as two potential ways to obtain superior aeroacoustic behavior compared to commonly used Kevlar fabrics.  more » « less
Award ID(s):
2012443
NSF-PAR ID:
10317512
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
AIAA Journal
ISSN:
0001-1452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we will develop a model for the acoustic transmission loss and self-noise generated by a Kevlar wind tunnel wall. It is shown that the porosity of the fabric is the most important controlling factor of the transmission loss, and the effect of wind tunnel flow speed is to increase the losses, as observed in experiments. In addition, a model is developed for the weave noise generated by a Kevlar wind tunnel wall, which is found to be caused by the pumping of the fluid through the pores in the Kevlar and depends on their open area ratio. The mechanism for this sound generation is similar to the roughness noise mechanism for a turbulent boundary layer in that the pore spacing couples with the small wavelength disturbances in the boundary layer to cause acoustic radiation at the sum and difference frequencies.

     
    more » « less
  2. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design, manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. The glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications. 
    more » « less
  3. Silica-based aerogels are a promising low-cost solution for improving the insulation efficiency of single-pane windows and reducing the energy consumption required for space heating and cooling. Two key material properties required are high porosity and small pore sizes, which lead to low thermal conductivity and high optical transparency, respectively. However, porosity and pore size are generally directly linked, where high porosity materials also have large pore sizes. This is unfavorable as large pores scatter light, resulting in reduced transmittance in the visible regime. In this work, we utilized preformed silica colloids to explore methods for reducing pore size while maintaining high porosity. The use of preformed colloids allows us to isolate the effect of solution conditions on porous gel network formation by eliminating simultaneous nanoparticle growth and aggregation found when using typical sol–gel molecular-based silica precursors. Specifically, we used in situ synchrotron-based small-angle x-ray scattering during gel formation to better understand how pH, concentration, and colloid size affect particle aggregation and pore structure. Ex situ characterization of dried gels demonstrates that peak pore widths can be reduced from 15 to 13 nm, accompanied by a narrowing of the overall pore size distribution, while maintaining porosities of 70%–80%. Optical transparency is found to increase with decreasing pore sizes while low thermal conductivities ranging from 95 +/− 13 mW/m K are maintained. Mechanical performance was found to depend primarily on effective density and did not show a significant dependence on solution conditions. Overall, our results provide insights into methods to preserve high porosity in nanoparticle-based aerogels while improving optical transparency.

     
    more » « less
  4. Focused ion beam (FIB) – scanning electron microscopy (SEM) allowed the characterization of the microstructure of two solid oxide fuel cells prepared at different sintering temperatures. 3D volume reconstruction showed that a relatively low sintering temperature significantly and positively affected distribution, volume and particle size of yttria-stabilized zirconia, nickel, and pore phases inside the anode, as well as the extent of the important triple-phase boundary interface. The poor performance of the T1 sample sintered at a higher temperature is explained by the poorly connected pore network and very low-density triple-phase boundary. The pore space inside the T1 anode was unable to ensure continuous hydrogen flow from the inlet to the outlet and thus exhibited very low gas permeability. In contrast, the T2 sample sintered at a lower temperature had approximately equal amounts of YSZ and nickel and larger pores, which allowed formation of significantly more TPB electrochemical reaction sites. The higher power density of the T2 cell was also the result of its robust pore network capable of transporting hydrogen throughout the anode. The methodology used in this paper eliminates the need for employing hypothetical structures and provides accurate estimates of the investigated parameters by evaluating microstructures that were successfully reconstructed using high-resolution microscopy techniques. 
    more » « less
  5. Abstract

    Electrospinning is considered a powerful method for the production of fibers in the nanoscale size. Small pore size results in poor cell infiltration, cell migration inhibition into scaffold pores and low oxygen diffusion. Electrospun polycaprolactone/gelatin/nano‐hydroxyapatite (PCL/Gel/nHA) scaffolds were deposited into two types of fiber collectors (novel rotating disc and plate) to study fiber morphology, chemical, mechanical, hydrophilic, and biodegradation properties between each other. The proliferation and differentiation of MG‐63 cells into the bone phenotype were determined using MTT method, alizarin red staining and alkaline phosphatase (ALP) activity. The rates for disc rotation were 50 and 100 rpm. The pore size measurement results indicated that the fibers produced by the disc rotation collector with speed rate 50 rpm have larger pores as compared to fibers produced by disc rotation at 100 rpm and flat plate collectors. A randomly structure with controlled pore size (38.65 ±0.33 μm) and lower fiber density, as compared to fibers collected by disc rotation with speed rate 100 rpm and flat plate collectors, was obtained. Fibers collected on the rotating disc with speed rate 50 rpm, were more hydrophilic due to larger pore size and therefore, faster infiltration of water into the scaffold and the rate of degradation was higher. These results demonstrate that PCL/Gel/nHA scaffolds made through a rotating disc collector at 50 rpm are more feasible to be used in bone tissue engineering applications due to appropriate pore size and increased adhesion and proliferation of cells, ALP activity and mineral deposits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 933–950, 2019.

     
    more » « less