Rechargeable aqueous batteries with Zn2+as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g−1at 0.1 A g−1, and the capacity retention rate is 94% after 2000 cycles at 2 A g−1and 83% after 10 000 cycles at 5 A g−1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8layered structure in NaCaVO is energetically favorable for Zn2+diffusion and the structural water situated between V3O8layers promotes a fast charge‐transfer and bulk migration of Zn2+by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+and Ca2+alternately suited in V3O8layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.
- Award ID(s):
- 1752517
- PAR ID:
- 10317733
- Date Published:
- Journal Name:
- Energy Material Advances
- Volume:
- 2022
- ISSN:
- 2692-7640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials.
-
Abstract Li2MnO3has been contemplated as a high‐capacity cathode candidate for Li‐ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low‐temperature electrochemical properties of Li2MnO3in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g−1at a potential of 1.0 V versus Ag/AgCl at −78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2MnO3cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2MnO3but the reversible Cl2(l)/Cl−(aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2MnO3to promote the Cl2/Cl−redox at low temperatures.
-
Abstract Fluoridation of Lithium‐ion (Li‐ion) cathodes is of growing interest for high‐capacity Li+storage materials, but well‐controlled fluoridation processes are elusive. We investigated an electrochemical methodology to grow lithium fluoride (LiF) by reduction of perfluorinated gas onto metal oxides (MO), which then forms M−O−F by splitting of LiF upon charge, using MnO as an example target phase. Unlike current methods where particle size <10 nm is necessary for high MnO utilization (subsequent discharge/lithiation capacity), owing to the nano‐crystallinity and intimate contact of electrochemically‐grown LiF, high MnO utilization (∼0.9 e−/MnO, 340 mAh gMnO−1) is achieved with large MnO particle size (∼400 nm), exceeding comparable MnO/LiF systems reported to date. Additionally, incorporation of perfluorinated‐gas additive benefits cycling, with capacity of ∼270 mAh gMnO−1retained after 20 cycles. This work demonstrates the opportunity for electrochemically driven fluoridation to achieve high capacities with larger particle sizes needed to bring oxyfluorides closer to practical reality.
-
Abstract Aqueous dual‐ion batteries (DIBs) are promising for large‐scale energy storage due to low cost and inherent safety. However, DIBs are limited by low capacity and poor cycling of cathode materials and the challenge of electrolyte decomposition. In this study, a new cathode material of nitrogen‐doped microcrystalline graphene‐like carbon is investigated in a water‐in‐salt electrolyte of 30 m ZnCl2, where this carbon cathode stores anions reversibly via both electrical double layer adsorption and ion insertion. The (de)insertion of anions in carbon lattice delivers a high‐potential plateau at 1.85 V versus Zn2+/Zn, contributing nearly 1/3 of the capacity of 134 mAh g−1and half of the stored energy. This study shows that both the unique carbon structure and concentrated ZnCl2electrolyte play critical roles in allowing anion storage in carbon cathode for this aqueous DIB.