A widely used cerebrovascular stimulus and common pathophysiologic condition, hypercapnia is of great interest in brain research. However, it remains controversial how hypercapnia affects brain hemodynamics and energy metabolism. By using multi-parametric photoacoustic microscopy, the multifaceted responses of the awake mouse brain to different levels of hypercapnia are investigated. Our results show significant and vessel type-dependent increases of the vessel diameter and blood flow in response to the hypercapnic challenges, along with a decrease in oxygen extraction fraction due to elevated venous blood oxygenation. Interestingly, the increased blood flow and decreased oxygen extraction are not commensurate with each other, which leads to reduced cerebral oxygen metabolism. Further, time-lapse imaging over 2-hour chronic hypercapnic challenges reveals that the structural, functional, and metabolic changes induced by severe hypercapnia (10% CO 2 ) are not only more pronounced but more enduring than those induced by mild hypercapnia (5% CO 2 ), indicating that the extent of brain’s compensatory response to chronic hypercapnia is inversely related to the severity of the challenge. Offering quantitative, dynamic, and CO 2 level-dependent insights into the hemodynamic and metabolic responses of the brain to hypercapnia, these findings might provide useful guidance to the application of hypercapnia in brain research. 
                        more » 
                        « less   
                    
                            
                            Longitudinal cortex-wide monitoring of cerebral hemodynamics and oxygen metabolism in awake mice using multi-parametric photoacoustic microscopy
                        
                    
    
            Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm 2 ), light-weight (2 g), dual-transparency ( i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2023988
- PAR ID:
- 10317842
- Date Published:
- Journal Name:
- Journal of Cerebral Blood Flow & Metabolism
- Volume:
- 41
- Issue:
- 12
- ISSN:
- 0271-678X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Understanding and measuring parameters responsible for the pathogenesis of sepsis-induced AKI (SI-AKI) is critical in developing therapies. Blood flow to the kidney is heterogeneous, partly due to the existence of dynamic networks of capillaries in various regions, responding differentially to oxygen demand in cortex versus medulla. High energy demand regions, especially the outer medulla, are susceptible to hypoxia and subject to damage during SI-AKI. Proximal tubule epithelial cells in the cortex and the outer medulla can also undergo metabolic reprogramming during SI-AKI to maintain basal physiological status and to avoid potential damage. Current data on the assessment of renal hemodynamics and oxygen metabolism during sepsis is limited. Preclinical and clinical studies show changes in renal hemodynamics associated with SI-AKI, and in clinical settings, interventions to manage renal hemodynamics seem to help improve disease outcomes in some cases. Lack of proper tools to assess temporospatial changes in peritubular blood flow and tissue oxygen metabolism is a barrier to our ability to understand microcirculatory dynamics and oxygen consumption and their role in the pathogenesis of SI-AKI. Current tools to assess renal oxygenation are limited in their usability as these cannot perform continuous simultaneous measurement of renal hemodynamics and oxygen metabolism. Multi-parametric photo-acoustic microscopy (PAM) is a new tool that can measure real-time changes in microhemodynamics and oxygen metabolism. Use of multi-parametric PAM in combination with advanced intravital imaging techniques has the potential to understand the contribution of microhemodynamic and tissue oxygenation alterations to SI-AKI.more » « less
- 
            Capable of imaging blood perfusion, oxygenation, and flow simultaneously at the microscopic level, multi-parametric photoacoustic microscopy (PAM) has quickly emerged as a powerful tool for studying hemodynamic and metabolic changes due to physiological stimulations or pathological processes. However, the low scanning speed poised by the correlation-based blood flow measurement impedes its application in studying rapid microvascular responses. To address this challenge, we have developed a new, to the best of our knowledge, multi-parametric PAM system. By extending the optical scanning range with a cylindrically focused ultrasonic transducer (focal zone, ) for simultaneous acquisition of 500 B-scans, the new system is 112 times faster than our previous multi-parametric system that uses a spherically focused transducer (focal diameter, 40 µm) and enables high-resolution imaging of blood perfusion, oxygenation, and flow over an area of at a frame rate of 1 Hz. We have demonstrated the feasibility of this system in the living mouse ear. Further development of this system into reflection mode will enable real-time cortex-wide imaging of hemodynamics and metabolism in the mouse brain.more » « less
- 
            High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts. Using a 14 T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100 µm×100 µm×200 µm resolution with a 2 s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust blood oxygen level-dependent (BOLD) responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 s prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous exposure of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.more » « less
- 
            null (Ed.)Chronic cranial windows allow for longitudinal brain imaging experiments in awake, behaving mice. Different imaging technologies have their unique advantages and combining multiple imaging modalities offers measurements of a wide spectrum of neuronal, glial, vascular, and metabolic parameters needed for comprehensive investigation of physiological and pathophysiological mechanisms. Here, we detail a suite of surgical techniques for installation of different cranial windows targeted for specific imaging technologies and their combination. Following these techniques and practices will yield higher experimental success and reproducibility of results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    