Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm 2 ), light-weight (2 g), dual-transparency ( i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases. 
                        more » 
                        « less   
                    
                            
                            Hemodynamic and oxygen-metabolic responses of the awake mouse brain to hypercapnia revealed by multi-parametric photoacoustic microscopy
                        
                    
    
            A widely used cerebrovascular stimulus and common pathophysiologic condition, hypercapnia is of great interest in brain research. However, it remains controversial how hypercapnia affects brain hemodynamics and energy metabolism. By using multi-parametric photoacoustic microscopy, the multifaceted responses of the awake mouse brain to different levels of hypercapnia are investigated. Our results show significant and vessel type-dependent increases of the vessel diameter and blood flow in response to the hypercapnic challenges, along with a decrease in oxygen extraction fraction due to elevated venous blood oxygenation. Interestingly, the increased blood flow and decreased oxygen extraction are not commensurate with each other, which leads to reduced cerebral oxygen metabolism. Further, time-lapse imaging over 2-hour chronic hypercapnic challenges reveals that the structural, functional, and metabolic changes induced by severe hypercapnia (10% CO 2 ) are not only more pronounced but more enduring than those induced by mild hypercapnia (5% CO 2 ), indicating that the extent of brain’s compensatory response to chronic hypercapnia is inversely related to the severity of the challenge. Offering quantitative, dynamic, and CO 2 level-dependent insights into the hemodynamic and metabolic responses of the brain to hypercapnia, these findings might provide useful guidance to the application of hypercapnia in brain research. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2023988
- PAR ID:
- 10317841
- Date Published:
- Journal Name:
- Journal of Cerebral Blood Flow & Metabolism
- Volume:
- 41
- Issue:
- 10
- ISSN:
- 0271-678X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract ObjectiveTo incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. MethodsA vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral‐dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). ResultsThe model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. ConclusionsStructural adaptation of the vasculature allows for increased blood flow to the collateral‐dependent region after occlusion. Although flow is still below pre‐occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.more » « less
- 
            Abstract Studying brain‐wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro‐ diseases and ‐disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head‐mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain‐wide cerebrovascular reactivity (CVR) at single‐vessel resolution via relative changes in CBV, CBF, and SO2in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti‐correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions.more » « less
- 
            Impaired blood flow and oxygenation contribute to many ocular pathologies, including glaucoma. Here, a mathematical model is presented that combines an image-based heterogeneous representation of retinal arterioles with a compartmental description of capillaries and venules. The arteriolar model of the human retina is extrapolated from a previous mouse model based on confocal microscopy images. Every terminal arteriole is connected in series to compartments for capillaries and venules, yielding a hybrid model for predicting blood flow and oxygenation throughout the retinal microcirculation. A metabolic wall signal is calculated in each vessel according to blood and tissue oxygen levels. As expected, a higher average metabolic signal is generated in pathways with a lower average oxygen level. The model also predicts a wide range of metabolic signals dependent on oxygen levels and specific network location. For example, for high oxygen demand, a threefold range in metabolic signal is predicted despite nearly identical PO2 levels. This whole-network approach, including a spatially nonuniform structure, is needed to describe the metabolic status of the retina. This model provides the geometric and hemodynamic framework necessary to predict ocular blood flow regulation and will ultimately facilitate early detection and treatment of ischemic and metabolic disorders of the eye.more » « less
- 
            White seabass ( Atractoscion nobilis) increasingly experience periods of low oxygen (O 2 ; hypoxia) and high carbon dioxide (CO 2 , hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O 2 carrier in the blood and in many teleost fishes Hb-O 2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O 2 -carrying capacity during hypoxia and hypercapnia. We determined the O 2 -binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O 2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O 2 affinity (Po 2 at half-saturation; P 50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient −0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHE activity. The activation of RBC β-NHEs increased Hb-O 2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O 2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    