skip to main content


This content will become publicly available on November 1, 2024

Title: A Multi-Band Circularly Polarized-Shared Aperture Antenna for Space Applications at S and X Bands

In this article, a compact multiband antenna design and analysis is presented with a view of ensuring efficient uplink/downlink communications at the same time from a single antenna for CubeSat applications. This design shares the aperture of an S-band slot antenna to accommodate a square patch antenna operating in the X-band. Shared aperture antennas, along with an air gap and dielectric loading, provided good gain in both frequency bands. The S-band patch had an S11 = −10 dB bandwidth of 30 MHz (2013–2043 MHz, 1.5%), and the X-band antenna demonstrated a bandwidth of 210 MHz (8320–8530 MHz, 2.5%). The Axial Ratio (<3 dB) bandwidth of the slot antenna in the S-band is 7 MHz (2013–2020 MHz, 0.35%), and it is 67 MHz (8433–8500 MHz, 0.8%) in the case of patch antenna in the X-band. While the maximum gain in the S-band reached 7.7 dBic, in the X-band, the peak gain was 12.8 dBic. This performance comparison study shows that the antenna is advantageous in terms of high gain, maintains circular polarization over a wideband, and can replace two antennas needed in CubeSats for uplink/downlink, which essentially saves space.

 
more » « less
Award ID(s):
1936537
NSF-PAR ID:
10483367
Author(s) / Creator(s):
; ;
Publisher / Repository:
Electronics
Date Published:
Journal Name:
Electronics
Volume:
12
Issue:
21
ISSN:
2079-9292
Page Range / eLocation ID:
4439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At this frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and other subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved. 
    more » « less
  2. This paper presents a wideband circularly polarized antenna for small satellites to be used with NASA Near- Earth Networks (NEN). This single-fed stacked antenna utilizes the electromagnetic coupling concept and is usable with a duplex transceiver. The circularly-polarized antenna employs hybrid perturbations on stacked patches and covers NASA NEN’s both uplink and downlink frequencies, thus replacing the conventional requirement of two separate antennas. It provides a notable wide axial ratio (AR) < 3 dB bandwidth of 1.16 GHz from 7.02 GHz to 8.18 GHz (15.3%). The optimized patch dimensions provide 34.6% VSWR ~ 2 bandwidth from 6,525 MHz to 9,253 MHz. The overall antenna size is 17 mm × 17 mm × 6.6 mm, and has a peak gain of 7.9 dBi. This proposed antenna will overcome solar cell space constraint on smallsat’s outer wall by saving at least 50% area required by the conventional two-antenna method. 
    more » « less
  3. This paper demonstrates the design and implementation of two dual-polarized ultra-wideband antennas for radar ice sounding. The first antenna operates at UHF (600– 900 MHz). The second antenna operates at VHF (140–215 MHz). Each antenna element is composed of two orthogonal octagon-shaped dipoles, two inter-locked printed circuit baluns and an impedance matching network for each polarization. We built and tested one prototype antenna for each band and showed a VSWR of less than 2:1 at both polarizations over a fractional bandwidth exceeding 40 %. Our antennas display cross-polarization isolation larger than 30 dB, an E-plane 3-dB beamwidth of 69 degrees, and a gain of at least 4 dBi with a variation of ± 1 dB across the bandwidth. We demonstrate peak power handling capabilities of 400-W and 1000-W for the UHF and VHF bands, respectively. Our design flow allows for straightforward adjustment of the antenna dimensions to meet other bandwidth constraints. 
    more » « less
  4. Downlink channel estimation in massive MIMO systems is well known to generate a large overhead in frequency division duplex (FDD) mode as the amount of training generally scales with the number of transmit antennas. Using instead an extrapolation of the channel from the measured uplink estimates to the downlink frequency band completely removes this overhead. In this paper, we investigate the theoretical limits of channel extrapolation in frequency. We highlight the advantage of basing the extrapolation on high-resolution channel estimation. A lower bound (LB) on the mean squared error (MSE) of the extrapolated channel is derived. A simplified LB is also proposed, giving physical intuition on the SNR gain and extrapolation range that can be expected in practice. The validity of the simplified LB relies on the assumption that the paths are well separated. The SNR gain then linearly improves with the number of receive antennas while the extrapolation performance penalty quadratically scales with the ratio of the frequency and the training bandwidth. The theoretical LB is numerically evaluated using a 3GPP channel model and we show that the LB can be reached by practical high-resolution parameter extraction algorithms. Our results show that there are strong limitations on the extrapolation range than can be expected in SISO systems while much more promising results can be obtained in the multiple-antenna setting as the paths can be more easily separated in the delay-angle domain. 
    more » « less
  5. Full-duplex (FD) wireless can signi�cantly enhance spectrum e�ciency but requires tremendous amount of selfinterference (SI) cancellation. Recent advances in the RFIC community enabled wideband RF SI cancellation (SIC) in integrated circuits (ICs) via frequency-domain equalization (FDE), where RF �lters channelize the SI signal path. Unlike other FD implementations, that mostly rely on delay lines, FDE-based cancellers can be realized in small-formfactor devices. However, the fundamental limits and higher layer challenges associated with these cancellers were not explored yet. Therefore, and in order to support the integration with a software-de�ned radio (SDR) and to facilitate experimentation in a testbed with several nodes, we design and implement an FDE-based RF canceller on a printed circuit board (PCB). We derive and experimentally validate the PCB canceller model and present a canceller con�guration scheme based on an optimization problem. We then extensively evaluate the performance of the FDE-based FD radio in the SDR testbed. Experiments show that it achieves 95 dB overall SIC (52 dB from RF SIC) across 20 MHz bandwidth, and an average link-level FD gain of 1.87⇥. We also conduct experiments in: (i) uplink-downlink networks with inter-user interference, and (ii) heterogeneous networks with half-duplex and FD users. The experimental FD gains in the two types of networks con�rm previous analytical results. They depend on the users’ SNR values and the number of FD users, and are 1.14⇥–1.25⇥ and 1.25⇥–1.73⇥, respectively. Finally, we numerically evaluate and compare the RFIC and PCB implementations and study various design tradeo�s. 
    more » « less