Abstract This work reports on the correlation between structure, surface/interface morphology and mechanical properties of pulsed laser deposited (PLD)β-Ga2O3films on transparent quartz substrates. By varying the deposition temperature in the range of 25 °C–700 °C, ∼200 nm thick Ga2O3films with variable microstructure and amorphous-to-nanocrystalline nature were produced onto quartz substrates by PLD. The Ga2O3films deposited at room temperature were amorphous; nanocrystalline Ga2O3films were realized at 700 °C. The interface microstructure is characterized with a typical nano-columnar morphology while the surface exhibits the uniform granular morphology. Corroborating with structure and surface/interface morphology, and with increasing deposition temperature, tunable mechanical properties were seen in PLD Ga2O3films. At 700 °C, for nanocrystalline Ga2O3films, the dense grain packing reduces the elastic modulus Erwhile improving the hardness. The improved crystallinity at elevated temperatures coupled with nanocrystallinity, theβ-phase stabilization is accounted for the observed enhancement in the mechanical properties of PLD Ga2O3films. The structure-morphology-mechanical property correlation in nanocrystalline PLDβ-Ga2O3films deposited on quartz substrates is discussed in detail.
more »
« less
Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition
Abstract High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstract
more »
« less
- Award ID(s):
- 2042638
- PAR ID:
- 10317853
- Date Published:
- Journal Name:
- Journal of Materials Research
- Volume:
- 37
- Issue:
- 1
- ISSN:
- 0884-2914
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This report is on the nature of strain in thin films of yttrium iron garnet (YIG) on yttrium aluminum garnet (YAG) substrates due to film-substrate lattice mismatch and the resulting induced magnetic anisotropy. Films with thickness 55 nm to 380 nm were deposited on (100), (110), and (111) YAG substrates using pulsed laser deposition (PLD) techniques and characterized by structural and magnetic characterization techniques. The in-plane strain determined to be compressive using X-ray diffraction (XRD). It varied from −0.12% to −0.98% and increased in magnitude with increasing film thickness and was relatively large in films on (100) YAG. The out-of-plane strain was tensile and also increased with increasing film thickness. The estimated strain-induced magnetic anisotropy field, found from XRD data, was out of plane; its value increased with film thickness and ranged from 0.47 kOe to 3.96 kOe. Ferromagnetic resonance (FMR) measurements at 5 to 21 GHz also revealed the presence of a perpendicular magnetic anisotropy that decreased with increasing film thickness and its values were smaller than values obtained from XRD data. The PLD YIG films on YAG substrates exhibiting a perpendicular anisotropy field have the potential for use in self-biased sensors and high-frequency devices.more » « less
-
Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices.more » « less
-
The magnetocaloric effect (MCE) in iron (Fe) nanoparticles incorporated within a titanium nitride (TiN) thin-film matrix grown using pulsed laser deposition (PLD) is investigated in this study. The study demonstrates the ability to control the entropy change across the magnetic phase transition by varying the size of the Fe nanoparticles. The structural characterization carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning transmission electron (TEM) showed that TiN films are (111) textured, while the Fe-particles are mostly spherical in shapes, are single-crystalline, and have a coherent structure with the surrounding TiN thin-film matrix. The TiN thin-film matrix was chosen as a spacer layer since it is nonmagnetic, is highly corrosion-resistive, and can serve as an excellent conduit for extracting heat due to its high thermal conductivity (11 W/m K). The magnetic properties of Fe–TiN systems were investigated using a superconducting quantum interference device (SQUID) magnetometer. In-plane magnetic fields were applied to record magnetization versus field (M–H) and magnetization versus temperature (M–T) curves. The results showed that the Fe–TiN heterostructure system exhibits a substantial isothermal entropy change (ΔS) over a wide temperature range, encompassing room temperature to the blocking temperature of the Fe nanoparticles. Using Maxwell’s relation and analyzing magnetization–temperature data under different magnetic fields, quantitative insights into the isothermal entropy change (ΔS) and magnetocaloric effect (MCE) were obtained for the Fe–TiN heterostructure system. The study points out a considerable negative change in ΔS that reaches up to 0.2 J/kg K at 0.2 T and 300 K for the samples with a nanoparticle size on the order of 7 nm. Comparative analysis revealed that Fe nanoparticle samples demonstrate higher refrigeration capacity (RC) in comparison to Fe thin-film multilayer samples, with the RC increasing as the Fe particle size decreases. These findings provide valuable insights into the potential application of Fe–TiN heterostructures in solid-state cooling technologies, highlighting their enhanced magnetocaloric properties.more » « less
-
The ability to accommodate multiple principal cations within a single crystallographic structure makes high entropy oxides (HEOs) ideal systems for exploring new composition–property relationships. In this work, the high-entropy design strategy is extended to strained single-crystal HEO-manganite (HEO-Mn) thin films. Phase-pure orthorhombic films of (Gd0.2La0.2Nd0.2Sm0.2Sr0.2)MnO3 were deposited on three different single-crystal substrates: SrTiO3 (STO) (100), NdGaO3 (110), and LaAlO3 (LAO) (100), each inducing different degrees of epitaxial strain. Fully coherent growth of the thin films is observed in all cases, despite the high degree of lattice mismatch between HEO-Mn and LAO. Magnetometry measurements reveal distinct differences in the magnetic properties between epitaxially strained HEO-Mn thin films and their bulk crystalline HEO counterparts. In particular, the bulk polycrystalline HEO-Mn shows two magnetic transitions as opposed to a single one observed in epitaxial thin films. Moreover, the HEO-Mn film deposited on LAO exhibits a significant reduction in the Curie temperature, which is attributed to the strong variation of the in-plane lattice parameter along the thickness of the film and the resulting changes in the Mn–O–Mn bond geometry. Thus, this preliminary study demonstrates the potential of combining high entropy design with strain engineering to tailor the structure and functionality of perovskite manganites.more » « less
An official website of the United States government

