Abstract Constraining the long-term evolution of geoid anomalies is essential for unraveling Earth's internal dynamics. While most studies focus on present-day geoid snapshots, we reconstruct the time-dependent evolution of Earth’s strongest geoid depression, the Antarctic Geoid Low (AGL), over the Cenozoic. Unlike geodetic reference frames that place the deepest geoid low in the Indian Ocean, a geodynamic perspective (relative to a hydrostatic ellipsoid) reveals the strongest nonhydrostatic geoid depression actually resides over Antarctica. Using a back-and-forth nudging technique for time-reversed mantle convection modeling, we leverage 3-D mantle density structures derived from seismic tomography and geodynamic constraints. Our results show that the AGL has persisted for at least ~70 Myr, undergoing a major transition in amplitude and position between 50 and 30 Ma. This coincides with abrupt lateral shifts in Earth’s rotation axis at ~50 Ma, validated through paleomagnetic constraints on True Polar Wander. Initially, stable lower mantle contributions dominated the AGL, but over the past ~40 Myr, increasing upper-mantle buoyancy, particularly above ~1300 km depth, amplified the AGL magnitude. This shift stems from the interplay between long-term deep subduction beneath the Antarctic Peninsula and a buoyant, thermally driven upwelling of hot, low-density material from the lowermost mantle. These new results contrast with earlier interpretations, clarifying the crucial role of evolving mantle buoyancy in shaping global geoid anomalies. By incorporating seismic, geodynamic, and mineral-physics data, our reconstructions provide a more comprehensive understanding of mantle flow beneath Antarctica and offer new insights into the dynamic coupling between lower and upper mantle processes that govern Earth’s long-wavelength geoid evolution.
more »
« less
Mantle dynamics on large spatial and temporal scales
This article provides a review on the studies of large temporal and spatial scale dynamics of the Earth’s mantle. The review focuses on relevant observations and their geodynamic interpretations and implications. These observations include present-day Earth’s plate tectonics, long- and intermediate-wavelength geoid and gravity anomalies, and mantle seismic structures, as well as important tectonism and magmatism that have happened in the last one billion years, associated with the formation and breakup of supercontinents Pangea and Rodinia. Much of the discussion is centered on how these observations have motivated geodynamic studies and modeling that seek to understand and interpret the observations. This review covers four topics. The first is on the primary characteristics of mantle seismic structure and their dynamic origin. The present-day Earth’s mantle is predominated by long-wavelength structures (i.e., degree-2 in the lower mantle and LLSVPs near the core-mantle boundary) and linear structures in subduction zones, both of which can be interpreted as a result of mantle convection modulated by surface plate motion history in the last 100 million years. The second is on the long- and intermediate-wavelength geoid and gravity anomalies and their dynamic interpretation. The geoid anomalies are explained by mantle flow that is driven by buoyancy associated with the mantle structure. Such studies indicate that the upper mantle is at least one magnitude weaker than the lower mantle and strongly suggest the existence of a weak asthenosphere. Third, the cyclic process of formation and breakup of supercontinents Pangea and Rodinia is surface manifestation of time-dependent mantle convection. During supercontinent formation and its early stage, mantle structure is predominately degree-1 with cold downwellings in one hemisphere and hot upwellings in the other hemisphere. However, the degree-1 structure starts to transition to degree-2 mantle structure with two major antipodal upwelling systems (e.g., the present-day Earth) in the late stage of a supercontinent, leading to supercontinent breakup. Abundant observational and dynamic evidence support the 1-2-1 model for supercontinent cycle and mantle structure evolution. The fourth is on the origin of plate tectonics and long-term thermal evolution of the Earth which is a fundamentally important but also controversial topic in the studies of earth science.
more »
« less
- Award ID(s):
- 1940026
- PAR ID:
- 10317951
- Date Published:
- Journal Name:
- Chinese journal of geophysics
- Volume:
- 64
- Issue:
- 10
- ISSN:
- 0898-9591
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pacific‐Panthalassa plate tectonics are the most challenging on Earth to reconstruct during the Mesozoic and Cenozoic eras due to extensive subduction, which has resulted in large (>9,000 km length) unconstrained gaps between the Pacific and Laurasia (now NE Asia) back to the Early Jurassic. We build four contrasted NW Pacific‐Panthalassa global plate reconstructions and assimilate their velocity fields into global geodynamic models. We compare our predicted present mantle structure, synthetic geoid and dynamic topography to Earth observations. P‐wave tomographic filtering of predicted mantle structures allows for more explicit comparisons to global tomography. Plate reconstructions that include intra‐oceanic subduction in NW Pacific‐Panthalassa fit better to the observed geoid and residual topography, challenging popular models of Andean‐style subduction along East Asia. Our geodynamic models predict significant SE‐ward lateral slab advections within the NW Pacific basin lower mantle (∼2,500 km from Mesozoic times to present) that would confound “vertical slab sinking”‐style restorations of imaged slabs and past subduction zone locations.more » « less
-
Abstract The Earth's long‐ and intermediate‐wavelength geoid anomalies are surface expressions of mantle convection and are sensitive to mantle viscosity. While previous studies of the geoid provide important constraints on the mantle radial viscosity variations, the mantle buoyancy in these studies, as derived from either seismic tomography or slab density models, may suffer significant uncertainties. In this study, we formulate 3‐D spherical mantle convection models with plate motion history since the Cretaceous that generate dynamically self‐consistent mantle thermal and buoyancy structures, and for the first time, use the dynamically generated slab structures and the observed geoid to place important constraints on the mantle viscosity. We found that non‐uniform weak plate margins and strong plate interiors are critical in reproducing the observed geoid and surface plate motion, especially the net lithosphere rotation (i.e., degree‐1 toroidal plate motion). In the best‐fit model, which leads to correlation of 0.61 between the modeled and observed geoid at degrees 4–12, the lower mantle viscosity is ∼1.3–2.5 × 1022 Pa⋅s and is ∼30 and ∼600–1,000 times higher than that in the transition zone and asthenosphere, respectively. Slab structures and the geoid are also strongly affected by slab strength, and the observations prefer moderately strong slabs that are ∼10–100 times stronger than the ambient mantle. Finally, a thin weak layer below the 670‐km phase change on a regional scale only in subduction zones produces stagnant slabs in the mantle transition zone as effectively as a weak layer on a global scale.more » « less
-
The relative significance of various geodynamic mechanisms that drive supercontinent breakup is unclear. A previous analysis of extensional stress during supercontinent breakup demonstrated the importance of the plume‐push force relative to the dragging force of subduction retreat. Here, we extend the analysis to basal traction (shear stress) and cross‐lithosphere integrations of both extensional and shear stresses, aiming to understand more clearly the relevant importance of these mechanisms in supercontinent breakup. More importantly, we evaluate the effect of preexisting orogens (mobile belts) in the lithosphere on supercontinent breakup process. Our analysis suggests that a homogeneous supercontinent has extensional stress of 20–50 MPa in its interior (<40° from the central point). When orogens are introduced, the extensional stress in the continents focuses on the top 80‐km of the lithosphere with an average magnitude of ~160 MPa, whereas at the margin of the supercontinent the extensional stress is 5–50 MPa. In both homogeneous and orogeny‐embedded cases, the subsupercontinent mantle upwellings act as the controlling factor on the normal stress field in the supercontinent interior. Compared with the extensional stress, shear stress at the bottom of the supercontinent is 1–2 order of magnitude smaller (0–5 MPa). In our two end‐member models, the breakup of a supercontinent with orogens can be achieved after the first extensional stress surge, whereas for a hypothetical supercontinent without orogens it starts with more diffused local thinning of the continental lithospheric before the breakup, suggesting that weak orogens play a critical role in the dispersal of supercontinents.more » « less
-
Abstract The relative significance of various geodynamic mechanisms that drive supercontinent breakup is unclear. A previous analysis of extensional stress during supercontinent breakup demonstrated the importance of the plume‐push force relative to the dragging force of subduction retreat. Here, we extend the analysis to basal traction (shear stress) and cross‐lithosphere integrations of both extensional and shear stresses, aiming to understand more clearly the relevant importance of these mechanisms in supercontinent breakup. More importantly, we evaluate the effect of preexisting orogens (mobile belts) in the lithosphere on supercontinent breakup process. Our analysis suggests that a homogeneous supercontinent has extensional stress of 20–50 MPa in its interior (<40° from the central point). When orogens are introduced, the extensional stress in the continents focuses on the top 80‐km of the lithosphere with an average magnitude of ~160 MPa, whereas at the margin of the supercontinent the extensional stress is 5–50 MPa. In both homogeneous and orogeny‐embedded cases, the subsupercontinent mantle upwellings act as the controlling factor on the normal stress field in the supercontinent interior. Compared with the extensional stress, shear stress at the bottom of the supercontinent is 1–2 order of magnitude smaller (0–5 MPa). In our two end‐member models, the breakup of a supercontinent with orogens can be achieved after the first extensional stress surge, whereas for a hypothetical supercontinent without orogens it starts with more diffused local thinning of the continental lithospheric before the breakup, suggesting that weak orogens play a critical role in the dispersal of supercontinents.more » « less
An official website of the United States government

