skip to main content

Title: The Pursuit and Evasion of Drones Attacking an Automated Turret
This paper investigates the pursuit-evasion problem of a defensive gun turret and one or more attacking drones. The turret must "visit" each attacking drone once, as quickly as possible, to defeat the threat. This constitutes a Shortest Hamiltonian Path (SHP) through the drones. The investigation considers situations with increasing fidelity, starting with a 2D kinematic model and progressing to a 3D dynamic model. In 2D we determine the region from which one or more drones can always reach a turret, or the region close enough to it where they can evade the turret. This provides optimal starting angles for n drones around a turret and the maximum starting radius for one and two drones.We show that safety regions also exist in 3D and provide a controller so that a drone in this region can evade the pan-tilt turret. Through simulations we explore the maximum range n drones can start and still have at least one reach the turret, and analyze the effect of turret behavior and the drones’ number, starting configuration, and behaviors.
; ;
Award ID(s):
1849303 1553063
Publication Date:
Journal Name:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the scheduling problem related to engaging a swarm of attacking drones with a single defensive turret. The defending turret must turn, with a limited slew rate, and remain facing a drone for a dwell time to eliminate it. The turret must eliminate all the drones in the swarm before any drone reaches the turret. In 2D, this is an example of a Traveling Salesman Problem with Time Windows (TSPTW) where the turret must visit each target during the window. In 2D, the targets and turret are restricted to a plane and the turret rotates with one degree of freedom. In 3D, the turret can pan and tilt, while the drones attempt to reach a safe zone anywhere along the vertical axis above the turret. This 3D movement makes the problem more challenging, since the azimuth angles of the turret to the drones vary as a function of time. This paper investigates the theoretical optimal solution for simple swarm configurations. It compares heuristic approaches for the path scheduling problem in 2D and 3D using a simulation of the swarm behavior. It provides results for an improved heuristic approach, the Threat-Aware Nearest Neighbor.
  2. While more and more consumer drones are abused in recent attacks, there is still very little systematical research on countering malicious consumer drones. In this paper, we focus on this issue and develop effective attacks to common autopilot control algorithms to compromise the flight paths of autopiloted drones, e.g., leading them away from its preset paths. We consider attacking an autopiloted drone in three phases: attacking its onboard sensors, attacking its state estimation, and attacking its autopilot algorithms. Several firstphase attacks have been developed (e.g., [1]–[4]); second-phase attacks (including our previous work [5], [6]) have also been investigated. In this paper, we focus on the third-phase attacks. We examine three common autopilot algorithms, and design several attacks by exploiting their weaknesses to mislead a drone from its preset path to a manipulated path. We present the formal analysis of the scope of such manipulated paths. We further discuss how to apply the proposed attacks to disrupt preset drone missions, such as missing a target in searching an area or misleading a drone to intercept another drone, etc. Many potential attacks can be built on top of the proposed attacks. We are currently investigating different models to apply such attacks onmore »common drone missions and also building prototype systems on ArduPilot for real world tests. We will further investigate countermeasures to address the potential damages.« less
  3. As 5G systems are starting to be deployed and becoming part of many daily life applications, there is an increasing interest on the security of the overall system as 5G network architecture is significantly different than LTE systems. For instance, through application specific virtual network slices, one can trigger additional security measures depending on the sensitivity of the running application. Drones utilizing 5G could be a perfect example as they pose several safety threats if they are compromised. To this end, we propose a stronger authentication mechanism inspired from the idea of second-factor authentication in IT systems. Specifically, once the primary 5G authentication is executed, a specific slice can be tasked to trigger a second-factor authentication utilizing different factors from the primary one. This trigger mechanism utilizes the re-authentication procedure as specified in the 3GPP 5G standards for easy integration. Our second-factor authentication uses a special challenge-response protocol, which relies on unique drone digital ID as well as a seed and nonce generated from the slice to enable freshness. We implemented the proposed protocol in ns-3 that supports mmWave-based communication in 5G. We demonstrate that the proposed protocol is lightweight and can scale while enabling stronger security for the drones.
  4. Unmanned Aerial Vehicles (UAVs), or drones, are increasingly being utilized for public safety circumstances including post-disaster recovery of destroyed communication infrastructure. For instance, drones are temporarily positioned within an affected area to create a wireless mesh network among public safety personnel. To serve the need for high-rate video-based damage assessment, drone-assisted communication can utilize high- bandwidth millimeter wave (mmWave) technologies such as IEEE 802.11ad. However, short-range mmWave communication makes it hard for optimally- positioned drones to be authenticated with a centralized network control center. Therefore and assuming that there are potential imposters, we propose two lightweight and fast authentication mechanisms that take into account the physical limitations of mmWave communication. First, we propose a drone-to-drone authentication mechanism, which is based on proxy signatures from a control center. Accordingly, any newly joining drone can authenticate itself to an exist one rather than attempting to authenticate to the outof-reach control center. Second, we propose a drone-to- ground authentication mechanism, to enable each drone to authenticate itself to its associated ground users. Such authentication approach is based on challenge-response broadcast type, and it is still utilizing fast proxy signature approach. The evaluation of the proposed authentication mechanisms, conducted using NS-3 implementation of IEEEmore »802.11ad protocol, show their efficiency and practicality.« less
  5. In the next wave of swarm-based applications, unmanned aerial vehicles (UAVs) need to communicate with peer drones in any direction of a three-dimensional (3D) space. On a given drone and across drones, various antenna positions and orientations are possible. We know that, in free space, high levels of signal loss are expected if the transmitting and receiving antennas are cross polarized. However, increasing the reflective and scattering objects in the channel between a transmitter and receiver can cause the received polarization to become completely independent from the transmitted polarization, making the cross-polarization of antennas insignificant. Usually, these effects are studied in the context of cellular and terrestrial networks and have not been analyzed when those objects are the actual bodies of the communicating drones that can take different relative directions or move at various elevations. In this work, we show that the body of the drone can affect the received power across various antenna orientations and positions and act as a local scatterer that increases channel depolarization, reducing the cross-polarization discrimination (XPD). To investigate these effects, we perform experimentation that is staged in terms of complexity from a controlled environment of an anechoic chamber with and without drone bodies tomore »in-field environments where drone-mounted antennas are in-flight with various orientations and relative positions with the following outcomes: (i.) drone relative direction can significantly impact the XPD values, (ii.) elevation angle is a critical factor in 3D link performance, (iii.) antenna spacing requirements are altered for co-located cross-polarized antennas, and (iv.) cross-polarized antenna setups more than double spectral efficiency. Our results can serve as a guide for accurately simulating and modeling UAV networks and drone swarms.« less