- Award ID(s):
- 2048770
- NSF-PAR ID:
- 10318032
- Date Published:
- Journal Name:
- Weather and Forecasting
- ISSN:
- 0882-8156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Hodographs are valuable sources of pattern recognition in severe convective storm forecasting. Certain shapes are known to discriminate between single cell, multicell, and supercell storm organization. Various derived quantities such as storm-relative helicity (SRH) have been found to predict tornado potential and intensity. Over the years, collective research has established a conceptual model for tornadic hodographs (large and “looping”, with high SRH). However, considerably less attention has been given to constructing a similar conceptual model for hodographs of severe hail. This study explores how hodograph shape may differentiate between the environments of severe hail and tornadoes. While supercells are routinely assumed to carry the potential to produce all hazards, this is not always the case, and we explore why. The Storm Prediction Center (SPC) storm mode dataset is used to assess the environments of 8,958 tornadoes and 7,256 severe hail reports, produced by right- and left-moving supercells. Composite hodographs and indices to quantify wind shear are assessed for each hazard, and clear differences are found between the kinematic environments of hail-producing and tornadic supercells. The sensitivity of the hodograph to common thermodynamic variables was also examined, with buoyancy and moisture found to influence the shape associated with the hazards. The results suggest that differentiating between tornadic and hail-producing storms may be possible using properties of the hodograph alone. While anticipating hail size does not appear possible using only the hodograph, anticipating tornado intensity appears readily so. When coupled with buoyancy profiles, the hodograph may assist in differentiating between both hail size and tornado intensity.more » « less
-
Abstract Severe storms produce hazardous weather phenomena, such as large hail, damaging winds, and tornadoes. However, relationships between convective parameters and confirmed severe weather occurrences are poorly quantified in south-central Brazil. This study explores severe weather reports and measurements from newly available datasets. Hail, damaging wind, and tornado reports are sourced from the PREVOTS project from June 2018 to December 2021, while measurements of convectively induced wind gusts from 1996 to 2019 are obtained from METAR reports and from Brazil’s operational network of automated weather stations. Proximal convective parameters were computed from ERA5 reanalysis for these reports and used to perform a discriminant analysis using mixed-layer CAPE and deep-layer shear (DLS). Compared to other regions, thermodynamic parameters associated with severe weather episodes exhibit lower magnitudes in south-central Brazil. DLS displays better performance in distinguishing different types of hazardous weather, but does not discriminate well between distinct severity levels. To address the sensitivity of the discriminant analysis to distinct environmental regimes and hazard types, five different discriminants are assessed. These include discriminants for any severe storm, severe hail only, severe wind gust only, and all environments but broken into “high” and “low” CAPE regimes. The best performance of the discriminant analysis is found for the “high” CAPE regime, followed by the severe wind regime. All discriminants demonstrate that DLS plays a more important role in conditioning Brazilian severe storm environments than other regions, confirming the need to ensure that parameters and discriminants are tuned to local severe weather conditions.
-
null (Ed.)Abstract As lightning-detection records lengthen and the efficiency of severe weather reporting increases, more accurate climatologies of convective hazards can be constructed. In this study we aggregate flashes from the National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) with severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data on a common grid of 0.25° and 1-h steps. Each year approximately 75–200 thunderstorm hours occur over the southwestern, central, and eastern United States, with a peak over Florida (200–250 h). The activity over the majority of Europe ranges from 15 to 100 h, with peaks over Italy and mountains (Pyrenees, Alps, Carpathians, Dinaric Alps; 100–150 h). The highest convective activity over continental Europe occurs during summer and over the Mediterranean during autumn. The United States peak for tornadoes and large hail reports is in spring, preceding the maximum of lightning and severe wind reports by 1–2 months. Convective hazards occur typically in the late afternoon, with the exception of the Midwest and Great Plains, where mesoscale convective systems shift the peak lightning threat to the night. The severe wind threat is delayed by 1–2 h compared to hail and tornadoes. The fraction of nocturnal lightning over land ranges from 15% to 30% with the lowest values observed over Florida and mountains (~10%). Wintertime lightning shares the highest fraction of severe weather. Compared to Europe, extreme events are considerably more frequent over the United States, with maximum activity over the Great Plains. However, the threat over Europe should not be underestimated, as severe weather outbreaks with damaging winds, very large hail, and significant tornadoes occasionally occur over densely populated areas.more » « less
-
Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance.more » « less
-
Abstract Many studies have aimed to identify novel storm characteristics that are indicative of current or future severe weather potential using a combination of ground-based radar observations and severe reports. However, this is often done on a small scale using limited case studies on the order of tens to hundreds of storms due to how time-intensive this process is. Herein, we introduce the GridRad-Severe dataset, a database including ∼100 severe weather days per year and upward of 1.3 million objectively tracked storms from 2010 to 2019. Composite radar volumes spanning objectively determined, report-centered domains are created for each selected day using the GridRad compositing technique, with dates objectively determined using report thresholds defined to capture the highest-end severe weather days from each year, evenly distributed across all severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds for each event are objectively determined to encompass both the majority of reports and the time of convection initiation. Severe weather reports are matched to storms that are objectively tracked using the radar data, so the evolution of the storm cells and their severe weather production can be evaluated. Herein, we apply storm mode (single-cell, multicell, or mesoscale convective system storms) and right-moving supercell classification techniques to the dataset, and revisit various questions about severe storms and their bulk characteristics posed and evaluated in past work. Additional applications of this dataset are reviewed for possible future studies.