- Award ID(s):
- 1855054
- PAR ID:
- 10342196
- Date Published:
- Journal Name:
- Weather and Forecasting
- ISSN:
- 0882-8156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract A sample of 198 supercells are investigated to determine if a radar proxy for the area of the storm midlevel updraft may be a skillful predictor of imminent tornado formation and/or peak tornado intensity. A novel algorithm, a modified version of the Thunderstorm Risk Estimation from Nowcasting Development via Size Sorting (TRENDSS) algorithm is used to estimate the area of the enhanced differential radar reflectivity factor (Z DR ) column in Weather Surveillance Radar – 1988 Doppler data; the Z DR column area is used as a proxy for the area of the midlevel updraft. The areas of Z DR columns are compared for 154 tornadic supercells and 44 non-tornadic supercells, including 30+ supercells with tornadoes rated EF1, EF2, and EF3; nine supercells with EF4+ tornadoes also are analyzed. It is found that (i) at the time of their peak 0-1 km azimuthal shear, non-tornadic supercells have consistently small (< 20 km 2 ) Z DR column areas while tornadic cases exhibit much greater variability in areas, and (ii) at the time of tornadogenesis, EF3+ tornadic cases have larger Z DR column areas than tornadic cases rated EF1/2. In addition, all nine violent tornadoes sampled have Z DR column areas > 30 km 2 at the time of tornadogenesis. However, only weak positive correlation is found between Z DR column area and both radar-estimated peak tornado intensity and maximum tornado path width. Planned future work focused on mechanisms linking updraft size and tornado formation and intensity is summarized and the use of the modified TRENDSS algorithm, which is immune to Z DR bias and thus ideal for real-time operational use, is emphasized.more » « less
-
Supercell thunderstorms produce a variety of hazards, including tornadoes. A supercell will often exist for some time prior to producing a tornado, while other supercells never become tornadic. In this study, a series of hypotheses is tested regarding the ability of S-band polarimetric radar fields to distinguish pretornadic from nontornadic supercell storms. Several quantified polarimetric radar metrics are examined that are related to storm inflow, updraft, and hailfall characteristics in samples of 19–30 pretornadic and 18–31 nontornadic supercells. The results indicate that pretornadic supercells are characterized by smaller hail extent and echo appendages with larger mean drop size. Additionally, differential reflectivity ZDRcolumn size is larger and less variable in the pretornadic storms in the 25–30 min prior to initial tornadogenesis. Many of the results indicate relatively small polarimetric differences that will likely be difficult to translate to operational use. Hail extent and ZDRcolumn size, however, may exhibit operationally useful differences between pretornadic and nontornadic supercells.
-
Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.
-
null (Ed.)Abstract Some supercellular tornado outbreaks are composed almost entirely of tornadic supercells, while most consist of both tornadic and nontornadic supercells sometimes in close proximity to each other. These differences are related to a balance between larger-scale environmental influences on storm development as well as more chaotic, internal evolution. For example, some environments may be potent enough to support tornadic supercells even if less predictable intrastorm characteristics are suboptimal for tornadogenesis, while less potent environments are supportive of tornadic supercells given optimal intrastorm characteristics. This study addresses the sensitivity of tornadogenesis to both environmental characteristics and storm-scale features using a cloud modeling approach. Two high-resolution ensembles of simulated supercells are produced in the near- and far-field environments observed in the inflow of tornadic supercells during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). All simulated supercells evolving in the near-field environment produce a tornado, and 33% of supercells evolving in the far-field environment produce a tornado. Composite differences between the two ensembles are shown to address storm-scale characteristics and processes impacting the volatility of tornadogenesis. Storm-scale variability in the ensembles is illustrated using empirical orthogonal function analysis, revealing storm-generated boundaries that may be linked to the volatility of tornadogenesis. Updrafts in the near-field ensemble are markedly stronger than those in the far-field ensemble during the time period in which the ensembles most differ in terms of tornado production. These results suggest that storm-environment modifications can influence the volatility of supercellular tornadogenesis.more » « less
-
null (Ed.)Abstract The near-ground wind profile exhibits significant control over the organization, intensity, and steadiness of low-level updrafts and mesocyclones in severe thunderstorms, and thus their probability of being associated with tornadogenesis. The present work builds upon recent improvements in supercell tornado forecasting by examining the possibility that storm-relative helicity (SRH) integrated over progressively shallower layers has increased skill in differentiating between significantly tornadic and nontornadic severe thunderstorms. For a population of severe thunderstorms in the United States and Europe, sounding-derived parameters are computed from the ERA5 reanalysis, which has significantly enhanced vertical resolution compared to prior analyses. The ERA5 is shown to represent U.S. convective environments similarly to the Storm Prediction Center’s mesoscale surface objective analysis, but its greater number of vertical levels in the lower troposphere permits calculations to be performed over shallower layers. In the ERA5, progressively shallower layers of SRH provide greater discrimination between nontornadic and significantly tornadic thunderstorms in both the United States and Europe. In the United States, the 0–100 m AGL layer has the highest forecast skill of any SRH layer tested, although gains are comparatively modest for layers shallower than 0–500 m AGL. In Europe, the benefit from using shallower layers of SRH is even greater; the lower-tropospheric SRH is by far the most skillful ingredient there, far exceeding related composite parameters like the significant tornado parameter (which has negligible skill in Europe).more » « less