The microphone systems employed by smart devices such as cellphones and tablets require case penetrations that leave them vulnerable to environmental damage. A structural sensor mounted on the back of the display screen can be employed to record audio by capturing the bending vibration signals induced in the display panel by an incident acoustic wave - enabling a functional microphone on a fully sealed device. Distributed piezoelectric sensing elements and low-noise accelerometers were bonded to the surfaces of several different panels and used to record acoustic speech signals. The quality of the recorded signals was assessed using the speech transmission index, and the recordings were transcribed to text using an automatic speech recognition system. Although the quality of the speech signals recorded by the piezoelectric sensors was reduced compared to the quality of speech recorded by the accelerometers, the word-error-rate of each transcription increased only by approximately 2% on average, suggesting that distributed piezoelectric sensors can be used as a low-cost surface microphone for smart devices that employ automatic speech recognition. A method of crosstalk cancellation was also implemented to enable the simultaneous recording and playback of audio signals by an array of piezoelectric elements and evaluated by the measured improvement in the recording’s signal-to-interference ratio.
more »
« less
Audio-Source Rendering on Flat-Panel Loudspeakers with Non-Uniform Boundary Conditions
Devices from smartphones to televisions are beginning to employ dual purpose displays, where the display serves as both a video screen and a loudspeaker. In this paper we demonstrate a method to generate localized sound-radiating regions on a flat-panel display. An array of force actuators affixed to the back of the panel is driven by appropriately filtered audio signals so the total response of the panel due to the actuator array approximates a target spatial acceleration profile. The response of the panel to each actuator individually is initially measured via a laser vibrometer, and the required actuator filters for each source position are determined by an optimization procedure that minimizes the mean squared error between the reconstructed and targeted acceleration profiles. Since the single-actuator panel responses are determined empirically, the method does not require analytical or numerical models of the system’s modal response, and thus is well-suited to panels having the complex boundary conditions typical of television screens, mobile devices, and tablets. The method is demonstrated on two panels with differing boundary conditions. When integrated with display technology, the localized audio source rendering method may transform traditional displays into multimodal audio-visual interfaces by colocating localized audio sources and objects in the video stream.
more »
« less
- Award ID(s):
- 2104758
- PAR ID:
- 10318141
- Date Published:
- Journal Name:
- 151st Convention of the Audio Engineering Society
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photovoltaic (PV) array analytics and control have become necessary for remote solar farms and for intelligent fault detection and power optimization. The management of a PV array requires auxiliary electronics that are attached to each solar panel. A collaborative industry-university-government project was established to create a smart monitoring device (SMD) and establish associated algorithms and software for fault detection and solar array management. First generation smart monitoring devices (SMDs) were built in Japan. At the same time, Arizona State University initiated research in algorithms and software to monitor and control individual solar panels. Second generation SMDs were developed later and included sensors for monitoring voltage, current, temperature, and irradiance at each individual panel. The latest SMDs include a radio and relays which allow modifying solar array connection topologies. With each panel equipped with such a sophisticated SMD, solar panels in a PV array behave essentially as nodes in an Internet of Things (IoT) type of topology. This solar energy IoT system is currently programmable and can: a) provide mobile analytics, b) enable solar farm control, c) detect and remedy faults, d) optimize power under different shading conditions, and e) reduce inverter transients. A series of federal and industry grants sponsored research on statistical signal analysis, communications, and optimization of this system. A Cyber-Physical project, whose aim is to improve solar array efficiency and robustness using new machine learning and imaging methods, was launched recentlymore » « less
-
The acoustic far-field pressure is determined for one-dimensional finite-chord panels with uniform porosity in a single-sided uniform flow. The unsteady, non-circulatory pressure on the panel is computed using a previously established analysis method. The acoustic field is computed using the Green’s method. Results from this acoustic analysis identify the sensitivity of the far-field pressure magnitude and directivity to changes in flow Mach number, the reduced frequency of the panel vibration, and the panel porosity level characterized by a Darcy-type porosity boundary condition.more » « less
-
Shape displays are a class of haptic devices that enable whole-hand haptic exploration of 3D surfaces. However, their scalability is limited by the mechanical complexity and high cost of traditional actuator arrays. In this paper, we propose using electroadhesive auxetic skins as a strain-limiting layer to create programmable shape change in a continuous (“formable crust”) shape display. Auxetic skins are manufactured as flexible printed circuit boards with dielectric-laminated electrodes on each auxetic unit cell (AUC), using monolithic fabrication to lower cost and assembly time. By layering multiple sheets and applying a voltage between electrodes on subsequent layers, electroadhesion locks individual AUCs, achieving a maximum in-plane stiffness variation of 7.6x with a power consumption of 50 μW/AUC. We first characterize an individual AUC and compare results to a kinematic model. We then validate the ability of a 5x5 AUC array to actively modify its own axial and transverse stiffness. Finally, we demonstrate this array in a continuous shape display as a strain-limiting skin to programmatically modulate the shape output of an inflatable LDPE pouch. Integrating electroadhesion with auxetics enables new capabilities for scalable, low-profile, and low-power control of flexible robotic systems.more » « less
-
Flight vehicles that operate in the supersonic regime can be subject to adverse fluid–structure interactions due to their lightweight design. The presence of geometric obstructions such as control surfaces or fins can induce shocks that can interact with the boundary layer, leading to flow separation. This work investigates experimentally the interaction between a compliant panel in a Mach 2 flow under a compression ramp-induced shock-wave/boundary-layer interaction (SBLI). Thin brass panels of different thickness are investigated in a wind tunnel. Tests are performed both with and without a 20◦ compression ramp installed. This direct comparison allows characterization of the effect of the SBLI on the system dynamics. High-speed stereoscopic digital image correlation (DIC) and fast-response pressure sensitive paint (PSP) are used to obtain simultaneous measurements of full field deformation and surface pressure of the panels. The panel vibration is dominated by the first bending mode. Despite the forcing of the separation shock foot, the presence of the SBLI does not significantly modify the operational deflection shape, frequency, and amplitude of the dominant vibration mode, beyond what is observed for the no-SBLI case. On the other hand, analysis of the shock foot motion shows that the shock primarily oscillates at the first natural frequency of the panel. This leads to the conclusion that the shock foot oscillation is driven by the panel vibration in a one-way coupling mechanism. The SBLI does modify the higher modes, which is likely due to localized forcing by the separation shock foot. Full-field surface pressure predictions are made using first order piston theory. Results show that the fluid–structure interaction is dominated by the large region of attached flow upstream of the shock foot.more » « less
An official website of the United States government

