skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Solar energy management as an Internet of Things (IoT) application
Photovoltaic (PV) array analytics and control have become necessary for remote solar farms and for intelligent fault detection and power optimization. The management of a PV array requires auxiliary electronics that are attached to each solar panel. A collaborative industry-university-government project was established to create a smart monitoring device (SMD) and establish associated algorithms and software for fault detection and solar array management. First generation smart monitoring devices (SMDs) were built in Japan. At the same time, Arizona State University initiated research in algorithms and software to monitor and control individual solar panels. Second generation SMDs were developed later and included sensors for monitoring voltage, current, temperature, and irradiance at each individual panel. The latest SMDs include a radio and relays which allow modifying solar array connection topologies. With each panel equipped with such a sophisticated SMD, solar panels in a PV array behave essentially as nodes in an Internet of Things (IoT) type of topology. This solar energy IoT system is currently programmable and can: a) provide mobile analytics, b) enable solar farm control, c) detect and remedy faults, d) optimize power under different shading conditions, and e) reduce inverter transients. A series of federal and industry grants sponsored research on statistical signal analysis, communications, and optimization of this system. A Cyber-Physical project, whose aim is to improve solar array efficiency and robustness using new machine learning and imaging methods, was launched recently  more » « less
Award ID(s):
1646542
PAR ID:
10076703
Author(s) / Creator(s):
Date Published:
Journal Name:
2017 IEEE 8th International Conference on Information, Intelligence, Systems & Applications (IISA)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we describe a Cyber-Physical system approach to Photovoltaic (PV) array control. A machine learning and computer vision framework is proposed for improving the reliability of utility scale PV arrays by leveraging video analysis of local skyline imagery, customized machine learning methods for fault detection, and monitoring devices that sense data and actuate at each individual panel. Our approach promises to improve efficiency in renewable energy systems using cyber-enabled sensory analysis and fusion. 
    more » « less
  2. null (Ed.)
    There has been significant growth in both utility-scale and residential-scale solar installations in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential-scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this article, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead uses a model-driven approach that leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that SunDown has a Mean Absolute Percentage Error of 2.98% when predicting per-panel output. Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy. 
    more » « less
  3. Among major energy conversion methods, photovoltaic (PV) solar cells have been the most popular and widely employed for a variety of applications. Although a PV solar panel has been shown as one of the most efficient green energy sources, its 2D surface solar light harvesting has reached great limitations as it requires large surface areas. There is, therefore, an increasing need to seek solar harvest in a three-dimensional fashion for enhanced energy density. In addition to a conventional 2D solar panel in the x-y area, we extend another dimension of solar harvesting in the z-axis through multiple CdTe solar panels arranged in parallel. The high transparency allows sunlight to partially penetrate multiple solar panels, resulting in significantly increased solar harvesting surface area in a 3D fashion. The advantages of the 3D multi-panel solar harvesting system include: i) enlarged solar light collecting surface area, therefore increased energy density, ii) the total output power from multiple panels can exceed that of the single panel, and iii) significantly reduced surface area needed for densely populated cities. With five CdTe solar panels of different transparencies in parallel, the multilayer system can produce collective output power 233% higher than that of the single solar panel under the same surface area when arranged in descending (i.e., PV panel with the highest transparency on top and lowest at bottom). The PCE of the multi-panel system has also increased 233% in descending order indicating the viability of 3D solar harvesting. The multi-panel system will dimensionally transform solar harvesting from 2D to 3D for more efficient energy generation. 
    more » « less
  4. Cyberattacks targeted to the energy cyber-physical system (ECPS), also known as the smart grid, could interrupt the electricity supply with major ramifications. Attackers identify and exploit any vulnerable portion of the energy power grid, including the inverters with solar-powered photovoltaic (PV) panels. PV presents unique challenges as electricity consumers have also become providers of solar energy for utilities. As mandates require increased PV penetration across the world for positive environmental impacts, increased cyberattacks targeted at PV systems impact reliability and efficiency within the ECPS. The new technologies continuously being introduced to manage the ECPS and ensure bi-directional communications and energy flow between components also lead to more attack surfaces, system vulnerabilities, and heightened malicious attacks. Data integrity attacks are increasing within PV systems. In this paper, we present a survey of different methods that are proposed and explored for identifying and preventing cyberattacks targeted at PV systems. The attack detection methods include voltage control, data diodes, and voltage measurement algorithms. Furthermore, we present blockchain, cyber switching, and other attack mitigation techniques for PV systems. 
    more » « less
  5. The amount of greenhouse gas emissions from streetlights is equivalent to 2.6 million cars with as many as 26 million streetlights in the United States. The proposed IoT controller integrates sensors to make these streetlights as hubs for smart environment monitoring with effective energy usage. Conservation of energy is one of the main concerns in the modern era, and energy coming from the sun can be utilized efficiently alongside a smart streetlight management system instead of conventional streetlight management techniques. Additionally, with streetlights being present throughout a city, the opportunity to collect city-wide weather data is proposed. To this end, a solar-powered IoT-based smart street lighting and environmental monitoring system is proposed. The proposed energy-efficient IoT-based system uses a microcontroller to control light-emitting diode (LED) streetlights depending on lighting conditions and vehicle detection, ensuring that the streetlights can be turned on when needed. 
    more » « less