skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitomagnetic Dipole Moment of Gravitational Unit Cells
It is proposed that gravitational meta-atom unit cells with gravitomagnetic moments could exhibit gravitomagnetic permeability, analogous to the magnetic permeability of materials comprised of atoms with magnetic moments. Recently, a gravitoelectromagnetic (GEM) framework was proposed to explore the possibility of a Veselago-inspired approach to gravitational metamaterials. The prospect of gravitational metamaterials motivates the consideration of candidate gravitational unit cells or gravitational meta-atoms. Although mass serves as a monopole source of a gravitoelectric field similar to positive charge, negative mass would be needed to create a gravitational analog of an electric dipole. However, moving mass is analogous to electric current, and can lead to a gravitomagnetic dipole moment analogous to magnetic dipole moments of magnetic materials and atoms. In this paper, GEM field approximations to general relativity are used to find the gravitomagnetic dipole moment of different rotating systems, ranging in scale from meters to astronomical size.  more » « less
Award ID(s):
1731675
PAR ID:
10318218
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electromagnetic metamaterials, which are a major type of artificially engineered materials, have boosted the development of optical and photonic devices due to their unprecedented and controllable effective properties, including electric permittivity and magnetic permeability. Metamaterials consist of arrays of subwavelength unit cells, which are also known as meta-atoms. Importantly, the effective properties of metamaterials are mainly determined by the geometry of the constituting subwavelength unit cells rather than their chemical composition, enabling versatile designs of their electromagnetic properties. Recent research has mainly focused on reconfigurable, tunable, and nonlinear metamaterials towards the development of metamaterial devices, namely, metadevices, via integrating actuation mechanisms and quantum materials with meta-atoms. Microelectromechanical systems (MEMS), or microsystems, provide powerful platforms for the manipulation of the effective properties of metamaterials and the integration of abundant functions with metamaterials. In this review, we will introduce the fundamentals of metamaterials, approaches to integrate MEMS with metamaterials, functional metadevices from the synergy, and outlooks for metamaterial-enabled photonic devices. 
    more » « less
  2. For large or infinite metasurfaces, a design tech- nique for a dense array of subwavelength resonators on an irregular grid is presented. For a given incident wave, the desired induced dipole moment distribution determines the local electric field that excites individual meta-atoms. The interaction field that accounts for mutual coupling is evaluated via a combination of discrete coupling from nearby resonators and continuous sheet current coupling from far-separated resonators. Meta-atoms placed on an irregular grid can be treated, greatly enhancing the flexibility in surface profile in practical conformal metasurfaces. 
    more » « less
  3. A bstract We perform a model-independent analysis of the magnetic and electric dipole moments of the muon and electron. We give expressions for the dipole moments in terms of operator coefficients of the low-energy effective field theory (LEFT) and the Standard Model effective field theory (SMEFT). We use one-loop renormalization group improved perturbation theory, including the one-loop matching from SMEFT onto LEFT, and one-loop lepton matrix elements of the effective-theory operators. Semileptonic four-fermion operators involving light quarks give sizable non-perturbative contributions to the dipole moments, which are included in our analysis. We find that only a very limited set of the SMEFT operators is able to generate the current deviation of the magnetic moment of the muon from its Standard Model expectation. 
    more » « less
  4. Abstract Structured lights, including beams carrying spin and orbital angular momenta, radially and azimuthally polarized vector beams, as well as spatiotemporal optical vortices, have attracted significant interest due to their unique amplitude, phase front, polarization, and temporal structures, enabling a variety of applications in optical and quantum communications, micromanipulation, and super‐resolution imaging. In parallel, structured optical materials, metamaterials, and metasurfaces consisting of engineered unit cells—meta‐atoms, opened new avenues for manipulating the flow of light and optical sensing. While several studies explored structured light effects on the individual meta‐atoms, their shapes are largely limited to simple spherical geometries. However, the synergy of the structured light and complex‐shaped meta‐atoms has not been fully explored. In this paper, the role of the helical wavefront of Laguerre–Gaussian beams in the excitation and suppression of higher‐order resonant modes inside all‐dielectric meta‐atoms of various shapes, aspect ratios, and orientations, is demonstrated and the excitation of various multipolar moments that are not accessible via unstructured light illumination is predicted. The presented study elucidates the role of the complex phase distribution of the incident light in shape‐dependent resonant scattering, which is of utmost importance in a wide spectrum of applications ranging from remote sensing to spectroscopy. 
    more » « less
  5. Abstract Molecules with unstable isotopes often contain heavy and deformed nuclei and thus possess a high sensitivity to parity-violating effects, such as the Schiff moments. Currently the best limits on Schiff moments are set with diamagnetic atoms. Polar molecules with quantum-enhanced sensing capabilities, however, can offer better sensitivity. In this work, we consider the prototypical 223 Fr 107 Ag molecule, as the octupole deformation of the unstable 223 Fr francium nucleus amplifies the nuclear Schiff moment of the molecule by two orders of magnitude relative to that of spherical nuclei and as the silver atom has a large electron affinity. To develop a competitive experimental platform based on molecular quantum systems, 223 Fr atoms and 107 Ag atoms have to be brought together at ultracold temperatures. That is, we explore the prospects of forming 223 Fr 107 Ag from laser-cooled Fr and Ag atoms. We have performed fully relativistic electronic-structure calculations of ground and excited states of FrAg that account for the strong spin-dependent relativistic effects of Fr and the strong ionic bond to Ag. In addition, we predict the nearest-neighbor densities of magnetic-field Feshbach resonances in ultracold 223 Fr + 107 Ag collisions with coupled-channel calculations. These resonances can be used for magneto-association into ultracold, weakly-bound FrAg. We also determine the conditions for creating 223 Fr 107 Ag molecules in their absolute ground state from these weakly-bound dimers via stimulated Raman adiabatic passage using our calculations of the relativistic transition electric dipole moments. 
    more » « less