skip to main content


Title: A Digital Non-Foster VHF Radio Approach for Enabling Low-Power Internet of Things
A digital non-Foster radio approach is proposed to mitigate Wheeler-Chu limits of electrically-small antennas, with significant potential to significantly reduce energy consumption in the VHF (very high frequency) band, where radio propagation losses below 200 MHz are 100 times less than losses above 2 GHz. Operation at lower frequency could greatly extend lifetimes of small low-power Internet-of-Things devices such as battery-powered sensors operating primarily as transmitters. Unfortunately, physical size constraints and the Wheeler-Chu limit have greatly hindered utilization of VHF bands for mobile devices, where even a 200 MHz half-wave dipole is an unwieldy 0.75 m. However, recent advances in non-Foster impedance matching methods have overcome these limits. In addition, recent digital non-Foster methods are shown to closely resemble digital radio architectures, suggesting that these newer digital non-Foster methods can be readily adopted in new digital radio designs. Therefore, a novel digital non-Foster radio architecture is proposed, where digital non-Foster methods enable small devices in energy-efficient VHF bands while overcoming Wheeler-Chu antenna-size limits.  more » « less
Award ID(s):
1731675
NSF-PAR ID:
10318220
Author(s) / Creator(s):
Date Published:
Journal Name:
2020 IEEE International Symposium on Circuits and Systems (ISCAS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper reports a study to understand the radio spectrum of thunderstorm narrow bipolar events (NBEs) or compact intracloud discharges, which are powerful sources of high‐frequency (HF) and very high frequency (VHF) electromagnetic radiation. The radio spectra from 10 kHz to about 100 MHz are obtained for three NBEs, including one caused by fast positive breakdown and two by fast negative breakdown. The results indicate that the two polarities of fast breakdown have similar spectra, with a relatively flat spectrum in the HF and VHF band. The ratio of energy spectral densities in the very low frequency and HF bands is (0.9–5) × 105. We develop a statistical modeling approach to investigate if a system of streamers can explain the main features of fast breakdown. Assuming that the current moment peak and charge moment change of individual streamers vary in the ranges of 5–10 A‐m and 5–20 μC‐m, respectively, the modeling results indicate that a system of 107–108streamers can reproduce the current moment, charge transfer, and radio spectrum of fast breakdown. The rapid current variation on a time scale of nanoseconds required for fast breakdown to produce strong HF/VHF emissions is provided by exponentially accelerating and expanding streamers. Our study therefore supports the hypothesis that fast breakdown is a system of streamers. Finally, suggestions are given regarding future streamer simulations and NBE measurements in order to further develop our understanding of NBEs and lightning initiation.

     
    more » « less
  2. Abstract Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars ( $\epsilon_r\lesssim10^{-4}$ ), the fraction of magnetic energy in the GRB jet ( $\epsilon_B\lesssim2\times10^{-4}$ ), and the radio emission efficiency of the magnetar remnant ( $\epsilon_r\lesssim10^{-3}$ ). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of $z\sim0.6$ . Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes. 
    more » « less
  3. null (Ed.)
    This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At this frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and other subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved. 
    more » « less
  4. Abstract

    Brief bursts of high‐frequency (HF) and very high frequency (VHF) radio emissions unaccompanied by strong low‐frequency radiation have been observed during initiation and propagation of lightning or thunderstorm electrical breakdown without leading to fully fledged lightning. This paper investigates a physical mechanism to generate such radio bursts by electrical discharge activity inside a thundercloud. When a discharge consists of many high‐frequency emission sources, such as streamers, that generate currents in random directions, its radiation spectrum peaks in the HF and VHF bands, and the spectral magnitudes in low frequencies are much smaller or even negligible. Combined with recent observational findings, the present study suggests that lightning initiation may begin with a short burst of many randomly occurring small‐scale discharges in a localized thundercloud region.

     
    more » « less
  5. ABSTRACT We present a low-frequency (170–200 MHz) search for prompt radio emission associated with the long GRB 210419A using the rapid-response mode of the Murchison Widefield Array (MWA), triggering observations with the Voltage Capture System for the first time. The MWA began observing GRB 210419A within 89 s of its detection by Swift, enabling us to capture any dispersion delayed signal emitted by this gamma-ray burst (GRB) for a typical range of redshifts. We conducted a standard single pulse search with a temporal and spectral resolution of $100\, \mu$s and 10 kHz over a broad range of dispersion measures from 1 to $5000\, \text{pc}\, \text{cm}^{-3}$, but none were detected. However, fluence upper limits of 77–224 Jy ms derived over a pulse width of 0.5–10 ms and a redshift of 0.6 < z < 4 are some of the most stringent at low radio frequencies. We compared these fluence limits to the GRB jet–interstellar medium interaction model, placing constraints on the fraction of magnetic energy (ϵB ≲ [0.05–0.1]). We also searched for signals during the X-ray flaring activity of GRB 210419A on minute time-scales in the image domain and found no emission, resulting in an intensity upper limit of $0.57\, \text{Jy}\, \text{beam}^{-1}$, corresponding to a constraint of ϵB ≲ 10−3. Our non-detection could imply that GRB 210419A was at a high redshift, there was not enough magnetic energy for low-frequency emission, or the radio waves did not escape from the GRB environment. 
    more » « less