skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Centrifugal-electrostatic confinement fusion
A model for plasma confinement is developed and applied for describing an electrically confined thermonuclear plasma. The plasma confinement model includes both an analytical approach that excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for space charge. The plasma consists of reactant ions that form a non-neutral plasma without electrons. The plasma drifts around a negatively charged electrode. Conditions are predicted for confining a deuterium–tritium plasma using a 460 kV applied electric potential difference. The ion plasma would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy production rate is predicted to be 10 times larger than the energy loss rate, including contributions associated with both plasma loss to electrodes and secondary electron emission. However, an approach for enhancing the fusion power density may have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion.  more » « less
Award ID(s):
1803047
PAR ID:
10538207
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
30
Issue:
9
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radio-frequency (RF) charged particle traps, such as the Paul trap or higher order RF multipole traps, may be used to trap quasi-neutral plasma. The presence of positive and negative plasma species mitigates the ejection of particles that occurs due to space charge repulsion. For symmetric species, such as a pair plasma, the trapped particle distribution is essentially equal for both species. For plasma with species of disparate charge-to-mass ratio, the RF parameters are chosen to directly trap the lighter species, leading to loss of the heavier species until sufficient net space charge develops to prevent further loss. Two-dimensional (2D) electrostatic particle-in-cell simulations are performed of cases with mass ratio m+/m− = 10, and also with ion–electron plasma. Multipole cases including order N = 2 (quadrupole) and higher order N = 8 (hexadecapole) are considered. The light ion-heavy ion N = 8 case exhibits particles losses less than 5% over 2500 RF periods, but the N = 8 ion–electron case exhibits a higher loss rate, likely due to non-adiabaticity of electron trajectories at the boundary, but still with low total electron loss current on the order of 10 μA. The N = 2 ion-electron case is adiabatic and stable, but is subject to a smaller trapping volume and greater initial perturbation of the bulk plasma by the trapping field. 
    more » « less
  2. Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions. 
    more » « less
  3. A new Magnetic Recoil Spectrometer (MRSt) is designed to provide time-resolved measurements of the energy spectrum of neutrons emanating from an inertial confinement fusion implosion at the National Ignition Facility. At present, time integrated parameters are being measured using the existing magnet recoil and neutron time-of-flight spectrometers. The capability of high energy resolution of 2 keV and the extension to high time resolution of about 20 ps are expected to improve our understanding of conditions required for successful fusion experiments. The layout, ion-optics, and specifications of the MRSt will be presented. 
    more » « less
  4. Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes. 
    more » « less
  5. Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. 
    more » « less