skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: One Step at a Time: Deepening Socio-technical Learning in Undergraduate ICT Externships to Bridge the Digital Divide
This paper describes the temporal progression of human and social dimensions that undergraduate information and communications technology (ICT) students realized during an experiential learning externship where they explored digital divide technology solutions for low-income neighborhoods in the surrounding urban community. The described research represents significant adaptation and use of socio-technical integration research (STIR) with undergraduate ICT students engaged in work based experiential learning to promote equity in STEM education, instill a sense of civic responsibility, and practice approaches to tackling complex societal problems. Methods used for the research study included: STIR, semi-structured interviews, and on-site group observations. Using STIR, an embedded social scientist conducted regular one-on-one dialogs with three of four student externs, to collaboratively describe each student’s consideration of human and social dimensions as part of their technical work, explore alternative choices and their potential outcomes, and engage in reflexive learning that in some cases, influenced deliberate changes to material and behavioral practices. The on-site observation of group activities within the ICT innovation center situated in the local urban community provided additional ecosystem context during technical solution design and development of the digital divide solution for local high schools and feeder schools. Outcomes for participating undergraduate ICT students showed: 1) Technology learning improvements for all students; 2) Capacity building to reflect, anticipate and respond to socio-technical interactions for some students; and 3) Each student was able to progress to a new level of socio-technical learning and decision making. Reflexive discourse with participants surfaced cultural assets and consideration of alternative knowledges in collaborative technology design, development, and implementation that can potentially lead to solutions that are more community centered now and in the future as the ICT students transition to the workforce.  more » « less
Award ID(s):
1953763
PAR ID:
10318371
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Internet Technologies & Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes the temporal progression of human and social dimensions that undergraduate information and communications technology (ICT) students realized during an experiential learning externship where they explored digital divide technology solutions for low-income neighborhoods in the surrounding urban community. The described research represents significant adaptation and use of socio-technical integration research (STIR) with undergraduate ICT students engaged in work based experiential learning to promote equity in STEM education, instill a sense of civic responsibility, and practice approaches to tackling complex societal problems. Methods used for the research study included: STIR, semi-structured interviews, and on-site group observations. Using STIR, an embedded social scientist conducted regular one-on-one dialogs with three of four student externs, to collaboratively describe each student’s consideration of human and social dimensions as part of their technical work, explore alternative choices and their potential outcomes, and engage in reflexive learning that in some cases, influenced deliberate changes to material and behavioral practices. The on-site observation of group activities within the ICT innovation center situated in the local urban community provided additional ecosystem context during technical solution design and development of the digital divide solution for local high schools and feeder schools. Outcomes for participating undergraduate ICT students showed: 1) Technology learning improvements for all students; 2) Capacity building to reflect, anticipate and respond to socio-technical interactions for some students; and 3) Each student was able to progress to a new level of socio-technical learning and decision making. Reflexive discourse with participants surfaced cultural assets and consideration of alternative knowledges in collaborative technology design, development, and implementation that can potentially lead to solutions that are more community centered now and in the future as the ICT students transition to the workforce. 
    more » « less
  2. “A culture of disengagement” is what Erin Cech [1, see also 4,9] has named the phenomenon that, within engineering schools, students graduate with less interest in societal issues than when they arrive. Much of this disengagement is attributed to mindsets ([2]: centrality of military and corporate organizations, uncritical acceptance of authority, technical narrowness, positivism and the myth of objectivity) and ideologies ([1]: technical-social dualism, depoliticization, meritocracy) that create a socio-technical divide that encourages many students to marginalize social issues related to engineering. In recent years, some scholars have proposed ways to overcome this disengagement, for example Jon Leydens and Juan Lucena’s (2018) “Engineering for Social Justice Criteria.” However, little research has been conducted to trace how engineering students are taking up these programs. This paper builds on an NSF-funded ethnographic study of cultural practices in a Science, Technology, and Society (STS) program that serves 1st and 2nd year engineering students [6, 22- 23]. That research study sought to answer: How does this program cultivate engineering students' macro-ethical reasoning about science and technology? Radoff and colleagues [6] identified four salient ways that students described the cultural practices of the STS program: 1) cultivating an ethics of care, 2) making the invisible visible, 3) understanding systems from multiple perspectives, and 4) empowering students to develop moral stances as engineers in society (developing a sense of agency). This paper builds off of insights uncovered from Radoff et al by zooming in on the ways students describe how their sense of agency manifests during their time in the program. On top of interview and focus group data, we draw examples from STS student participant observations in STS courses [27]. We use examples drawn from this data to reflect on how encouraging student agency can help overcome the socio-technical divide. 
    more » « less
  3. “A culture of disengagement” is what Erin Cech [1, see also 4,9] has named the phenomenon that, within engineering schools, students graduate with less interest in societal issues than when they arrive. Much of this disengagement is attributed to mindsets ([2]: centrality of military and corporate organizations, uncritical acceptance of authority, technical narrowness, positivism and the myth of objectivity) and ideologies ([1]: technical-social dualism, depoliticization, meritocracy) that create a socio-technical divide that encourages many students to marginalize social issues related to engineering. In recent years, some scholars have proposed ways to overcome this disengagement, for example Jon Leydens and Juan Lucena’s (2018) “Engineering for Social Justice Criteria.” However, little research has been conducted to trace how engineering students are taking up these programs. This paper builds on an NSF-funded ethnographic study of cultural practices in a Science, Technology, and Society (STS) program that serves 1st and 2nd year engineering students [6, 22- 23]. That research study sought to answer: How does this program cultivate engineering students' macro-ethical reasoning about science and technology? Radoff and colleagues [6] identified four salient ways that students described the cultural practices of the STS program: 1) cultivating an ethics of care, 2) making the invisible visible, 3) understanding systems from multiple perspectives, and 4) empowering students to develop moral stances as engineers in society (developing a sense of agency). This paper builds off of insights uncovered from Radoff et al by zooming in on the ways students describe how their sense of agency manifests during their time in the program. On top of interview and focus group data, we draw examples from STS student participant observations in STS courses [27]. We use examples drawn from this data to reflect on how encouraging student agency can help overcome the socio-technical divide. 
    more » « less
  4. This research explores the role that place attachment and place meaning towards an urban farm play in predicting undergraduate students’ civic-mindedness, an important factor in sustainability and social change. In 2017 and 2018, three STEM courses at a private university in the Midwest incorporated a local urban farm as a physical and conceptual context for teaching course content and sustainability concepts. Each course included a four to six-week long place-based experiential learning (PBEL) module aimed at enhancing undergraduate STEM student learning outcomes, particularly place attachment, situated sustainability meaning-making (SSMM), and civic-mindedness. End-of-course place attachment, SSMM, and civic-mindedness survey data were collected from students involved in these courses and combined with institutionally provided demographic information. Place attachment and SSMM surveys, along with the course in which the students participated, were statistically significant predictors of students’ civic mindedness score. 
    more » « less
  5. The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University and is in collaboration with New York City Public Schools. This large-scale project, Innovative Technology Experiences for Students and Teachers (ITEST), generated a large amount of data through programming that engaged both teachers and students. This article presents the third part to the study with focus on the Digital Platform and results from the student Symposium presentations. Part 1 focused on Underrepresented Minority (URM) student interest in STEM as motivated by the original project. Part 2 focused on URM student engagement with teachers to support students in teaching science through experiential learning and lessons that connect science to the real world, particularly through science in the New York Harbor. Moreover, the second part of the study focused on teacher engagement in the program, and what the researchers had learned in the process. The third aspect of the study, and primary focus on this paper, had found additional positive results cited by the teachers in the study both using the Digital Platform and after the project outcomes from the student Symposium presentations. 
    more » « less