Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The origin, evolution, and cycling of volatiles on the Moon are established by processes such as the giant moon forming impact, degassing of the lunar magma ocean, degassing during surface eruptions, and lunar surface gardening events. These processes typically induce mass‐dependent stable isotope fractionations. Mass‐independent fractionation of stable isotopes has yet to be demonstrated during events that release large volumes of gas on the moon and establish transient lunar atmospheres. We present quadruple sulfur isotope compositions of orange and black glass beads from drive tube 74002/1. The sulfur isotope and concentration data collected on the orange and black glasses confirm a role for magmatic sulfur loss during eruption. The Δ33S value of the orange glasses is homogenous (Δ33S = −0.029‰ ± 0.004‰, 2SE) and different from the isotopic composition of lunar basalts (Δ33S = 0.002‰ ± 0.004‰, 2SE). We link the negative Δ33S composition of the orange glasses to an anomalous sulfur source in the lunar mantle. The nature of this anomalous sulfur source remains unknown and is either linked to (a) an impactor that delivered anomalous sulfur after late accretion, (b) sulfur that was photochemically processed early during lunar evolution and was transported to the lunar mantle, or (c) a primitive sulfur component that survived mantle mixing. The examined black glass preserves a mass‐dependent Δ33S composition (−0.008‰ ± 0.006‰, 2SE). The orange and black glasses are considered genetically related, but the discrepancy in Δ33S composition among the two samples calls their relationship into question.more » « less
- 
            Volcanic rocks erupted among Pitcairn seamounts sample a mantle plume that exhibits an extreme Enriched Mantle-1 signature. The origin of this peculiar mantle endmember remains contentious, and could involve the recycling of marine sediments of Archean or Proterozoic ages, delaminated units from the lower continental crust, or metasomatized peridotites from a lithospheric mantle. Here, we report the sulfur multi-isotopic signature (32S, 33S, 34S, 36S) of 15 fresh submarine basaltic glasses from three Pitcairn seamounts. We observe evidence for magmatic degassing of sulfur from melts erupted ∼2,000 meters below seawater level (mbsl). Sulfur concentrations are correlated with eruption depth, and range between 1300 ppm S (collected ∼ 2,500 mbsl) and 600 ppm S (∼2,000 mbsl). The δ34S values can be accounted for under equilibrium isotope fractionation during degassing, with αgas-melt between 1.0020 and 1.0001 and starting δ34S values between −0.9‰ and +0.6‰. The δ34S estimates are similar or higher than MORB signatures, suggesting the contribution of recycled sulfur with a ∼ 1‰ 34S enrichment compared to the Pacific upper mantle. The Δ33S and Δ36S signatures average at +0.024±0.007‰ and +0.02±0.07‰ vs. CDT, respectively (all 1σ). Only Δ33S is statistically different from MORB, by +0.02‰. The Δ33S enrichment is invariant across degassing and sulfide segregation. We suggest it reflects a mantle source enrichment rather than a high-temperature fractionation of S in the basalts. Despite the small magnitude of the 33S-36S variations, our data require a substantial amount of recycled sulfur overwhelm the Pitcairn mantle source. We show that models involving metasomatized peridotites, lower crust units, or Archean sediments, may be viable, but are restricted to narrow sets of circumstances. Instead, scenarios involving the contribution of Proterozoic marine sediments appear to be the most parsimonious explanation for the EM-1 signature at Pitcairn.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
