skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the complexity of binary polynomial optimization over acyclic hypergraphs
In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances. Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance.  more » « less
Award ID(s):
1634768
PAR ID:
10330008
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Annual ACMSIAM Symposium on Discrete Algorithms
ISSN:
1557-9468
Page Range / eLocation ID:
2684 - 2699
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities allow us to obtain the first characterization of the multilinear polytope for hypergraphs that contain β-cycles. Namely, we show that the multilinear polytope for cycle hypergraphs is given by the standard linearization inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle hypergraph. This shows that instances represented by cycle hypergraphs can be solved in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform numerical experiments that imply that they close a significant percentage of the integrality gap. 
    more » « less
  2. Carbone, Alessandra; El-Kebir, Mohammed (Ed.)
    Cell signaling pathways, which are a series of reactions that start at receptors and end at transcription factors, are basic to systems biology. Properly modeling the reactions in such pathways requires directed hypergraphs, where an edge is now directed between two sets of vertices. Inferring a pathway by the most parsimonious series of reactions then corresponds to finding a shortest hyperpath in a directed hypergraph, which is NP-complete. The state of the art for shortest hyperpaths in cell-signaling hypergraphs solves a mixed-integer linear program to find an optimal hyperpath that is restricted to be acyclic, and offers no efficiency guarantees. We present for the first time a heuristic for general shortest hyperpaths that properly handles cycles, and is guaranteed to be efficient. Its accuracy is demonstrated through exhaustive experiments on all instances from the standard NCI-PID and Reactome pathway databases, which show the heuristic finds a hyperpath that matches the state-of-the-art mixed-integer linear program on over 99% of all instances that are acyclic. On instances where only cyclic hyperpaths exist, the heuristic surpasses the state-of-the-art, which finds no solution; on every such cyclic instance, enumerating all possible hyperpaths shows that the solution found by the heuristic is in fact optimal. 
    more » « less
  3. We study the classic Maximum Independent Set problem under the notion of stability introduced by Bilu and Linial (2010): a weighted instance of Independent Set is γ-stable if it has a unique optimal solution that remains the unique optimal solution under multiplicative perturbations of the weights by a factor of at most γ ≥ 1. The goal then is to efficiently recover this “pronounced” optimal solution exactly. In this work, we solve stable instances of Independent Set on several classes of graphs: we improve upon previous results by solving \tilde{O}(∆/sqrt(log ∆))-stable instances on graphs of maximum degree ∆, (k − 1)-stable instances on k-colorable graphs and (1 + ε)-stable instances on planar graphs (for any fixed ε > 0), using both combinatorial techniques as well as LPs and the Sherali-Adams hierarchy. For general graphs, we give an algorithm for (εn)-stable instances, for any fixed ε > 0, and lower bounds based on the planted clique conjecture. As a by-product of our techniques, we give algorithms as well as lower bounds for stable instances of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to Vertex Cover. Furthermore, we prove a general structural result showing that the integrality gap of convex relaxations of several maximization problems reduces dramatically on stable instances. Moreover, we initiate the study of certified algorithms for Independent Set. The notion of a γ-certified algorithm was introduced very recently by Makarychev and Makarychev (2018) and it is a class of γ-approximation algorithms that satisfy one crucial property: the solution returned is optimal for a perturbation of the original instance, where perturbations are again multiplicative up to a factor of γ ≥ 1 (hence, such algorithms not only solve γ-stable instances optimally, but also have guarantees even on unstable instances). Here, we obtain ∆-certified algorithms for Independent Set on graphs of maximum degree ∆, and (1 + ε)-certified algorithms on planar graphs. Finally, we analyze the algorithm of Berman and Fürer (1994) and prove that it is a ((∆+1)/3 + ε)-certified algorithm for Independent Set on graphs of maximum degree ∆ where all weights are equal to 1. 
    more » « less
  4. Abstract Background Cell signaling pathways, which are a series of reactions that start at receptors and end at transcription factors, are basic to systems biology. Properly modeling the reactions in such pathways requires directed hypergraphs , where an edge is now directed between two sets of vertices. Inferring a pathway by the most parsimonious series of reactions corresponds to finding a shortest hyperpath in a directed hypergraph, which is NP-complete. The current state-of-the-art for shortest hyperpaths in cell signaling hypergraphs solves a mixed-integer linear program to find an optimal hyperpath that is restricted to be acyclic, and offers no efficiency guarantees. Results We present, for the first time, a heuristic for general shortest hyperpaths that properly handles cycles , and is guaranteed to be efficient . We show the heuristic finds provably optimal hyperpaths for the class of singleton-tail hypergraphs, and also give a practical algorithm for tractably generating all source-sink hyperpaths. The accuracy of the heuristic is demonstrated through comprehensive experiments on all source-sink instances from the standard NCI-PID and Reactome pathway databases, which show it finds a hyperpath that matches the state-of-the-art mixed-integer linear program on over 99% of all instances that are acyclic. On instances where only cyclic hyperpaths exist, the heuristic surpasses the state-of-the-art, which finds no solution; on every such cyclic instance, enumerating all source-sink hyperpaths shows the solution found by the heuristic was in fact optimal . Conclusions The new shortest hyperpath heuristic is both fast and accurate . This makes finding source-sink hyperpaths, which in general may contain cycles, now practical for real cell signaling networks. Availability Source code for the hyperpath heuristic in a new tool we call  (as well as for hyperpath enumeration, and all dataset instances) is available free for non-commercial use at . 
    more » « less
  5. Since the early days of relational databases, it was realized that acyclic hypergraphs give rise to database schemas with desirable structural and algorithmic properties. In a bynow classical paper, Beeri, Fagin, Maier, and Yannakakis established several different equivalent characterizations of acyclicity; in particular, they showed that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for relations over that schema holds, which means that every collection of pairwise consistent relations over the schema is globally consistent. Even though real-life databases consist of bags (multisets), there has not been a study of the interplay between local consistency and global consistency for bags. We embark on such a study here and we first show that the sets of attributes of a schema form an acyclic hypergraph if and only if the local-to-global consistency property for bags over that schema holds. After this, we explore algorithmic aspects of global consistency for bags by analyzing the computational complexity of the global consistency problem for bags: given a collection of bags, are these bags globally consistent? We show that this problem is in NP, even when the schema is part of the input. We then establish the following dichotomy theorem for fixed schemas: if the schema is acyclic, then the global consistency problem for bags is solvable in polynomial time, while if the schema is cyclic, then the global consistency problem for bags is NP-complete. The latter result contrasts sharply with the state of affairs for relations, where, for each fixed schema, the global consistency problem for relations is solvable in polynomial time. 
    more » « less