- Award ID(s):
- 1800501
- PAR ID:
- 10318429
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Boron nitride (BN) is primarily a synthetically produced advanced ceramic material. It is isoelectronic to carbon and, like carbon, can exist as several polymorphic modifications. Microwave plasma chemical vapor deposition (MPCVD) of metastable wurtzite boron nitride is reported for the first time and found to be facilitated by the application of direct current (DC) bias to the substrate. The applied negative DC bias was found to yield a higher content of sp3 bonded BN in both cubic and metastable wurtzite structural forms. This is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Nano-indentation measurements reveal an average coating hardness of 25 GPa with some measurements as high as 31 GPa, consistent with a substantial fraction of sp3 bonding mixed with the hexagonal sp2 bonded BN phase.more » « less
-
The photochemically generated synthesis of a terminal uranium nitride species is here reported and an examination of its intra- and intermolecular chemistry is presented. Treatment of the U( iii ) complex L Ar UI(DME) ((L Ar ) 2− = 2,2′′-bis(Dippanilide)- p -terphenyl; Dipp = 2,6-diisopropylphenyl) with LiNIm Dipp ((NIm Dipp ) − = 1,3-bis(Dipp)-imidazolin-2-iminato) generates the sterically congested 3N-coordinate compound L Ar U(NIm Dipp ) ( 1 ). Complex 1 reacts with 1 equiv. of Ph 3 CN 3 to give the U( iv ) azide L Ar U(N 3 )(NIm Dipp ) ( 2 ). Structural analysis of 2 reveals inequivalent N α –N β > N β –N γ distances indicative of an activated azide moiety predisposed to N 2 loss. Room-temperature photolysis of benzene solutions of 2 affords the U( iv ) amide ( N -L Ar )U(NIm Dipp ) ( 3 ) via intramolecular N-atom insertion into the benzylic C–H bond of a pendant isopropyl group of the (L Ar ) 2− ligand. The formation of 3 occurs as a result of the intramolecular interception of the intermediately generated, terminal uranium nitride (L Ar )U(N)(NIm Dipp ) ( 3′ ). Evidence for the formation of 3′ is further bolstered by its intermolecular capture, accomplished by photolyzing solutions of 2 in the presence of an isocyanide or PMe 3 to give (L Ar )U[NCN(C 6 H 3 Me 2 )](NIm Dipp ) ( 5 ) and ( N , C -L Ar *)U(NPMe 3 )(NIm Dipp ) ( 6 ), respectively. These results expand upon the limited reactivity studies of terminal uranium–nitride moieties and provide new insights into their chemical properties.more » « less
-
Abstract The numerical analysis of stochastic parabolic partial differential equations of the form
is surveyed, where$$\begin{aligned} du + A(u)\, dt = f \,dt + g \, dW, \end{aligned}$$ A is a nonlinear partial operator andW a Brownian motion. This manuscript unifies much of the theory developed over the last decade into a cohesive framework which integrates techniques for the approximation of deterministic partial differential equations with methods for the approximation of stochastic ordinary differential equations. The manuscript is intended to be accessible to audiences versed in either of these disciplines, and examples are presented to illustrate the applicability of the theory. -
2D rare-earth metal carbides (MXenes) are attractive due to their novel electronic and magnetic properties and their potential as scalable 2D magnets. In this study, we used density functional theory with the Hubbard U correction to characterize the structure, termination, and magnetism in an out-of-plane ordered rare-earth containing M 3 C 2 T x MXene, Mo 2 NdC 2 T 2 (T = O or OH). We investigated the effect of the U parameter on the stability and magnetism of two possible termination sites: the hollow sites aligned with the inner Nd atoms (Nd-hollow sites) and those aligned with the closest C atoms (C-hollow sites). We found that increasing U Mo stabilized the Nd hollow sites, which minimized electrostatic repulsion between C and O atoms. Using U Mo = 3.0 eV and U Nd = 5.6 eV, obtained via the linear response method, we found that the energetically preferred termination site was C-hollow in Mo 2 NdC 2 O 2 and Nd-hollow in Mo 2 NdC 2 (OH) 2 . Regardless of termination and the Hubbard U value, we found Mo 2 NdC 2 O 2 and Mo 2 NdC 2 (OH) 2 to be magnetic. The C-hollow termination resulted in ferromagnetic states for all Hubbard U tested with no magnetic moment in Mo. In the case of Nd-hollow, Mo became magnetic for U Mo ≥ 4 eV. The difference of Mo magnetism in Nd-hollow and C-hollow was explained by crystal field splitting of the Mo d orbital caused by a distorted ligand.more » « less
-
The thioether-diphosphine pincer-ligated molybdenum complex, (PSP)MoCl3 (1-Cl3, PSP = 4,5-bis(diisopropylphosphino)-2,7-di-tert-butyl-9,9-dimethyl-9H-thioxanthene) has been synthesized as a catalyst-precursor for N2 reduction catalysis, with a focus on an integrated experimental/computational mechanistic investigation. The (PSP)Mo unit is isoelectronic with the (PNP)Mo (PNP = 2,6-bis(di-t-butylphosphinomethyl)pyridine) fragment found in the family of catalysts for the reduction of N2 to NH3 first reported in 2011 by Nishibayashi and co-workers. Under an atmosphere of N2 the reaction of 1-Cl3 with three reducing equivalents yields the dinuclear penta-dinitrogen Mo complex [(PSP)Mo(N2)2](-N2), 2. Electrochemical studies reveal that 1-Cl3 is significantly more easily reduced than (PNP)MoCl3 (with a potential ca. 0.4 eV less negative). The bridging-nitrogen complex 2 shows no indication of undergoing N2 cleavage to Mo nitride complexes. The reaction of 1-Cl3 with only two reducing equivalents, however, under N2 atmosphere and in the presence of iodide, affords the product of N2 cleavage, the nitride complex (PSP)Mo(N)(I). DFT calculations implicate another N2-bridged complex, [(PSP)Mo(I)]2(N2), as a viable intermediate in facile N2 cleavage to yield (PSP)Mo(N)(I). Conversion of the nitride ligand to NH3 has been studied. If considering sequential addition of H atoms to the nitride, formation of the first N-H bond is by far the thermodynamically least favorable of the three N-H bond formation steps. The first N-H bond was formed by reaction of (PSP)Mo(N)(I) with [LutH]Cl, where coordination of Cl– to Mo plays an essential role. Computations suggest that a second protonation, followed by a rapid and very favorable one-electron reduction, and then a third protonation, furnishes ammonia. In agreement with calculations, ammonia can be generated using either mild H-atom transfer reagents or mild reductants/acids. This comprehensive analysis of the elementary steps of ammonia synthesis and the role of the central pincer donor and halide association provides guidance for future catalyst designs.