The microbiomes of tropical corals are actively studied using 16S rRNA gene amplicons to understand microbial roles in coral health, metabolism, and disease resistance. However, due to the prokaryotic origins of mitochondria, primers targeting bacterial and archaeal 16S rRNA genes may also amplify homologous 12S mitochondrial rRNA genes from the host coral, associated microbial eukaryotes, and encrusting organisms. Standard microbial bioinformatics pipelines attempt to identify and remove these sequences by comparing them to reference taxonomies. However, commonly used tools have severely under-annotated mitochondrial sequences in 1440 coral microbiomes from the Global Coral Microbiome Project, preventing annotation of over 95% of reads in some samples. This issue persists when using Greengenes or SILVA prokaryotic reference taxonomies, and in other hosts, including 16S studies of vertebrates, and of marine sponges. Worse, mitochondrial under-annotation varies between coral families and across coral compartments, biasing comparisons of - and -diversity. By supplementing existing reference taxonomies with over 3000 animal mitochondrial rRNA gene sequences, we resolved roughly 97% of unique unclassified sequences as mitochondrial. These additional sequences did not cause a false elevation in mitochondrial annotations in mock communities with known compositions. We recommend using these extended taxonomies for coral microbiome analysis and whenever eukaryotic contamination may be a concern.
more »
« less
The Organelle in the Room: Under-annotated Mitochondrial Reads Bias Coral Microbiome Analysis
The microbiomes of tropical corals are actively studied using 16S rRNA gene amplicons to understand microbial roles in coral health, metabolism, and disease resistance. However, primers targeting bacterial and archaeal 16S rRNA genes may also amplify organelle rRNA genes from the coral, associated microbial eukaryotes, and encrusting organisms. In this manuscript, we demonstrate that standard workflows for annotating microbial taxonomy severely under-annotate mitochondrial sequences in 1272 coral microbiomes from the Earth Microbiome Project. This issue prevents annotation of >95% of reads in some samples and persists when using either Greengenes or SILVA taxonomies. Worse, mitochondrial under-annotation varies between species and across anatomy, biasing comparisons of α- and β-diversity. By supplementing existing taxonomies with diverse mitochondrial rRNA sequences, we resolve ~97% of unique unclassified sequences as mitochondrial, without increasing misannotation in mock communities. We recommend using these extended taxonomies for coral microbiome analysis and encourage vigilance regarding similar issues in other hosts.
more »
« less
- PAR ID:
- 10318453
- Date Published:
- Journal Name:
- bioRxiv
- ISSN:
- 2692-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The genomes of mitochondria and chloroplasts contain ribosomal RNA (rRNA) genes, reflecting their ancestry as free-living bacteria. These organellar rRNAs are often amplified in microbiome studies of animals and plants. If identified, they can be discarded, merely reducing sequencing depth. However, we identify certain high-abundance organeller RNAs not identified by common pipelines, which may compromise statistical analysis of microbiome structure and diversity. We quantified this by reanalyzing 7459 samples from seven 16S rRNA studies, including microbiomes from 927 unique animal genera. We find that under-annotation of cryptic mitochondrial and chloroplast reads affects multiple of these large-scale cross-species microbiome comparisons, and varies between host species, biasing comparisons. We offer a straightforward solution: supplementing existing taxonomies with diverse organelle rRNA sequences. This resolves up to 97% of unique unclassified sequences in some entire studies as mitochondrial (14% averaged across all studies), without increasing false positive annotations in mitochondria-free mock communities. Improved annotation decreases the proportion of unknown sequences by ≥10-fold in 2262 of 7459 samples (30%), spanning five of seven major studies examined. We recommend leveraging organelle sequence diversity to better identify organelle gene sequences in microbiome studies, and provide code, data resources and tutorials that implement this approach.more » « less
-
Abstract Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without prespecified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multilocus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data. [Deep learning; gene tree discordance; metagenomics; microbiome analyses; neural networks; phylogenetic placement.]more » « less
-
Sea cucumber grazing linked to enrichment of anaerobic microbial metabolisms in coral reef sedimentsAbstract Sea cucumbers have been overharvested world-wide, making assessments of their ecological effects challenging, but recent research demonstrated that sea cucumbers increase coral survival via disease suppression and were therefore important for facilitating reef health. The mechanisms underpinning the sea cucumber-coral interaction therefore are not well understood but are likely mediated through sea cucumber grazing of microbes from reef sediments. We explored how sea cucumber grazing alters the sediment microbiome by leveraging a healthy sea cucumber population on a reef in French Polynesia. We used quantitative PCR, 16S rRNA gene sequencing, and shotgun metagenomics to compare the sediment microbiome in cages placed in situ with or without sea cucumbers. We hypothesized that grazing would lower microbial biomass, change sediment microbiome composition, and deplete sediment metagenomes of anaerobic metabolisms, likely due to aeration of the sediments. Sea cucumber grazing resulted in a 75% reduction in 16S rRNA gene abundances and reshaped microbiome composition, causing a significant decrease of cyanobacteria and other phototrophs relative to ungrazed sediments. Grazing also resulted in a depletion of genes associated with cyanotoxin synthesis, suggesting a potential link to coral health. In contrast to expectations, grazed sediment metagenomes were enriched with marker genes of diverse anaerobic or microaerophilic metabolisms, including those encoding high oxygen affinity cytochrome oxidases. This enrichment differs from patterns linked to other bioturbating invertebrates. We hypothesize that grazing enriches anaerobic processes in sediment microbiomes through removal of oxygen-producing autotrophs, fecal deposition of sea cucumber gut-associated anaerobes, or modification of sediment diffusibility. These results suggest that sea cucumber harvesting influences biogeochemical processes in reef sediments, potentially mediating coral survival by altering the sediment microbiome and its production of coral-influencing metabolites.more » « less
-
Biddle, Jennifer F. (Ed.)ABSTRACT Global climate change impacts marine ecosystems through rising surface temperatures, ocean acidification, and deoxygenation. While the response of the coral holobiont to the first two effects has been relatively well studied, less is known about the response of the coral microbiome to deoxygenation. In this study, we investigated the response of the microbiome to hypoxia in two coral species that differ in their tolerance to hypoxia. We conductedin situoxygen manipulations on a coral reef in Bahía Almirante on the Caribbean coast of Panama, which has previously experienced documented episodes of hypoxia. Naïve coral colonies (previously unexposed to hypoxia) ofSiderastrea sidereaandAgaricia lamarckiwere transplanted to a reef and either enclosed in chambers that created hypoxic conditions or left at ambient oxygen levels. We collected samples of surface mucus and tissue after 48 hours of exposure and characterized the microbiome by sequencing 16S rRNA genes. We found that the microbiomes of the two coral species were distinct from one another and remained so after exhibiting similar shifts in microbiome composition in response to hypoxia. There was an increase in both abundance and number of taxa of anaerobic microbes after exposure to hypoxia. Some of these taxa may play beneficial roles in the coral holobiont by detoxifying the surrounding environment during hypoxic stress or may represent opportunists exploiting host stress. This work describes the first characterization of the coral microbiome under hypoxia and is an initial step toward identifying potential beneficial bacteria for corals facing this environmental stressor. IMPORTANCEMarine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels aroundSiderastrea sidereaandAgaricia lamarckicoloniesin situto observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.more » « less
An official website of the United States government

