skip to main content


This content will become publicly available on November 29, 2024

Title: Shifts in the coral microbiome in response to in situ experimental deoxygenation
ABSTRACT

Global climate change impacts marine ecosystems through rising surface temperatures, ocean acidification, and deoxygenation. While the response of the coral holobiont to the first two effects has been relatively well studied, less is known about the response of the coral microbiome to deoxygenation. In this study, we investigated the response of the microbiome to hypoxia in two coral species that differ in their tolerance to hypoxia. We conductedin situoxygen manipulations on a coral reef in Bahía Almirante on the Caribbean coast of Panama, which has previously experienced documented episodes of hypoxia. Naïve coral colonies (previously unexposed to hypoxia) ofSiderastrea sidereaandAgaricia lamarckiwere transplanted to a reef and either enclosed in chambers that created hypoxic conditions or left at ambient oxygen levels. We collected samples of surface mucus and tissue after 48 hours of exposure and characterized the microbiome by sequencing 16S rRNA genes. We found that the microbiomes of the two coral species were distinct from one another and remained so after exhibiting similar shifts in microbiome composition in response to hypoxia. There was an increase in both abundance and number of taxa of anaerobic microbes after exposure to hypoxia. Some of these taxa may play beneficial roles in the coral holobiont by detoxifying the surrounding environment during hypoxic stress or may represent opportunists exploiting host stress. This work describes the first characterization of the coral microbiome under hypoxia and is an initial step toward identifying potential beneficial bacteria for corals facing this environmental stressor.

IMPORTANCE

Marine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels aroundSiderastrea sidereaandAgaricia lamarckicoloniesin situto observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.

 
more » « less
Award ID(s):
2048914
NSF-PAR ID:
10495083
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Biddle, Jennifer F.
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
89
Issue:
11
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ocean deoxygenation is intensifying globally due to human activities – and is emerging as a grave threat to coral reef ecosystems where it can cause coral bleaching and mass mortality. However, deoxygenation is one of many threats to coral reefs, making it essential to understand how prior environmental stress may influence responses to deoxygenation. To address this question, we examined responses of the coral holobiont (i.e., the coral host, Symbiodiniaceae, and the microbiome) to deoxygenation in corals with different environmental stress backgrounds. We outplantedAcropora cervicornisfragments of known genotypes from anin situnursery to two sites in the Florida Keys spanning an inshore-offshore gradient. After four months, fragments from the outplanted corals were transferred to the laboratory, where we tested differences in survivorship, tissue loss, photosynthetic efficiency, Symbiodiniaceae cell density, and coral microbiome composition after persistent exposure to one of four oxygen treatments ranging from extreme deoxygenation (0.5 mg L-1) to normoxia (6 mg L-1). We found that, for the short duration of exposure tested in this study (four days), the entire coral holobiont was resistant to dissolved oxygen (DO) concentrations as low as 2.0 mg L-1, but that the responses of members of the holobiont decoupled at 0.5 mg L-1. In this most extreme treatment, the coral host showed decreased photosynthetic efficiency, tissue loss, and mortality, and lower Symbiodiniaceae densities in a bleaching response, but most microbial taxa remained stable. Although deoxygenation did not cause major community shifts in microbiome composition, the population abundance of some microbial taxa did respond. Site history influenced some responses of the coral host and endosymbiont, but not the coral microbiome, with corals from the more stressful inshore site showing greater susceptibility to subsequent deoxygenation. Our study reveals that coral holobiont members respond differently to deoxygenation, with greater sensitivity in the coral host and Symbiodiniaceae and greater resistance in the coral microbiome, and that prior stress exposure can decrease host tolerance to deoxygenation.

     
    more » « less
  2. Abstract

    Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large‐scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long‐term (28 months, 2018–2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves inAcropora retusa,Porites lobata, andPocilloporaspp., which included: microbiome acclimatization inA. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave inPocilloporaspp. Moreover, observed microbiome dynamics significantly correlated with coral species‐specific phenotypes. For example, bleaching and mortality inA. retusaboth significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, whileP. lobatacolonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality inA. retusa. This study reveals evidence for coral species‐specific microbial responses to repeated heatwaves and, importantly, suggests that host‐dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.

     
    more » « less
  3. Raina, Jean-Baptiste (Ed.)
    ABSTRACT Microbial relationships are critical to coral health, and changes in microbiomes are often exhibited following environmental disturbance. However, the dynamics of coral-microbial composition and external factors that govern coral microbiome assembly and response to disturbance remain largely uncharacterized. Here, we investigated how antibiotic-induced disturbance affects the coral mucus microbiota in the facultatively symbiotic temperate coral Astrangia poculata , which occurs naturally with high (symbiotic) or low (aposymbiotic) densities of the endosymbiotic dinoflagellate Breviolum psygmophilum . We also explored how differences in the mucus microbiome of natural and disturbed A. poculata colonies affected levels of extracellular superoxide, a reactive oxygen species thought to have both beneficial and detrimental effects on coral health. Using a bacterial and archaeal small-subunit (SSU) rRNA gene sequencing approach, we found that antibiotic exposure significantly altered the composition of the mucus microbiota but that it did not influence superoxide levels, suggesting that superoxide production in A. poculata is not influenced by the mucus microbiota. In antibiotic-treated A. poculata exposed to ambient seawater, mucus microbiota recovered to its initial state within 2 weeks following exposure, and six bacterial taxa played a prominent role in this reassembly. Microbial composition among symbiotic colonies was more similar throughout the 2-week recovery period than that among aposymbiotic colonies, whose microbiota exhibited significantly more interindividual variability after antibiotic treatment and during recovery. This work suggests that the A. poculata mucus microbiome can rapidly reestablish itself and that the presence of B. psygmophilum , perhaps by supplying nutrients, photosynthate, or other signaling molecules, exerts influence on this process. IMPORTANCE Corals are animals whose health is often maintained by symbiotic microalgae and other microorganisms, yet they are highly susceptible to environmental-related disturbances. Here, we used a known disruptor, antibiotics, to understand how the coral mucus microbial community reassembles itself following disturbance. We show that the Astrangia poculata microbiome can recover from this disturbance and that individuals with algal symbionts reestablish their microbiomes in a more consistent manner compared to corals lacking symbionts. This work is important because it suggests that this coral may be able to recover its mucus microbiome following disturbance, it identifies specific microbes that may be important to reassembly, and it demonstrates that algal symbionts may play a previously undocumented role in microbial recovery and resilience to environmental change. 
    more » « less
  4. Abstract

    Global change, including rising temperatures and acidification, threatens corals globally. Although bleaching events reveal fine‐scale patterns of resilience, traits enabling persistence under global change remain elusive. We conducted a 95‐d controlled‐laboratory experiment investigating how duration of exposure to warming (~28, 31°C), acidification (pCO2 ~ 343 [present day], ~663 [end of century], ~3109 [extreme]μatm), and their combination influences physiology of reef‐building corals (Siderastrea siderea,Pseudodiploria strigosa) from two reef zones on the Belize Mesoamerican Barrier Reef System. Every 30 d, net calcification rate, host protein and carbohydrate, chlorophylla, and symbiont density were quantified for the same coral individual to characterize acclimation potential under global change. Coral physiologies of the two species were differentially affected by stressors and exposure duration was found to modulate these responses.Siderastrea sidereaexhibited resistance to end of centurypCO2and temperature stress, but calcification was negatively affected by extremepCO2. However,S. sidereacalcification rates remained positive after 95 d of extremepCO2conditions, suggesting acclimation. In contrast,P. strigosawas more negatively influenced by elevated temperatures, which reduced most physiological parameters. An exception was nearshoreP. strigosa, which maintained calcification rates under elevated temperature, suggesting local adaptation to the warmer environment of their natal reef zone. This work highlights how tracking coral physiology across various exposure durations can capture acclimatory responses to global change stressors.

     
    more » « less
  5. Abstract Corals are important models for understanding invertebrate host–microbe interactions; however, to fully discern mechanisms involved in these relationships, experimental approaches for manipulating coral–bacteria associations are needed. Coral‐associated bacteria affect holobiont health via nutrient cycling, metabolic exchanges and pathogen exclusion, yet it is not fully understood how bacterial community shifts affect holobiont health and physiology. In this study, a combination of antibiotics (ampicillin, streptomycin and ciprofloxacin) was used to disrupt the bacterial communities of 14 colonies of the reef framework‐building corals Pocillopora meandrina and P .  verrucosa, originally collected from Panama and hosting diverse algal symbionts (family Symbiodiniaceae ). Symbiodiniaceae photochemical efficiencies and holobiont oxygen consumption (as proxies for coral health) were measured throughout a 5‐day exposure. Antibiotics altered bacterial community composition and reduced alpha and beta diversity, however, several bacteria persisted, leading to the hypothesis that these bacteria are either antibiotics resistant or occupy internal niches that are shielded from antibiotics. While antibiotics did not affect Symbiodiniaceae photochemical efficiency, antibiotics‐treated corals had lower oxygen consumption rates. RNAseq revealed that antibiotics increased expression of Pocillopora immunity and stress response genes at the expense of cellular maintenance and metabolism functions. Together, these results reveal that antibiotic disruption of corals' native bacteria negatively impacts holobiont health by decreasing oxygen consumption and activating host immunity without directly impairing Symbiodiniaceae photosynthesis, underscoring the critical role of coral‐associated bacteria in holobiont health. They also provide a baseline for future experiments that manipulate Pocillopora corals' symbioses by first reducing the diversity and complexity of coral‐associated bacteria. 
    more » « less