skip to main content

Title: Neutrino and Antineutrino pair-Emission in Strong Magnetic Field in Relativistic Quantum Approach
We study the v\bar v\-pair emission from electrons and protons in a relativistic quantum approach. In this work we calculate the luminosity of the v\bar v\-pairs emitted from neutron-star-matter with a strong magnetic field, and find that this luminosity is much larger than that in the modified Urca process. The v\bar v\-pair emission processes in strong magnetic fields significantly contribute to the cooling of the magnetars.  more » « less
Award ID(s):
2108339 2020275
Author(s) / Creator(s):
; ; ; ;
Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S.
Date Published:
Journal Name:
EPJ Web of Conferences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Blazars are a rare class of active galactic nuclei (AGNs) with relativistic jets pointing towards the observer. Jets are thought to be launched as Poynting-flux dominated outflows that accelerate to relativistic speeds at the expense of the available magnetic energy. In this work, we consider electron–proton jets and assume that particles are energized via magnetic reconnection in parts of the jet where the magnetization is still high (σ ≥ 1). The magnetization and bulk Lorentz factor Γ are related to the available jet energy per baryon as μ = Γ(1 + σ). We adopt an observationally motivated relation between Γ and the mass accretion rate into the black hole $\dot{m}$, which also controls the luminosity of external radiation fields. We numerically compute the photon and neutrino jet emission as a function of μ and σ. We find that the blazar SED is produced by synchrotron and inverse Compton radiation of accelerated electrons, while the emission of hadronic-related processes is subdominant except for the highest magnetization considered. We show that low-luminosity blazars (Lγ ≲ 1045 erg s−1) are associated with less powerful, slower jets with higher magnetizations in the jet dissipation region. Their broad-band photon spectra resemble those of BL Lac objects, and the expected neutrino luminosity is $L_{\nu +\bar{\nu }}\sim (0.3-1)\, L_{\gamma }$. High-luminosity blazars (Lγ ≫ 1045 erg s−1) are associated with more powerful, faster jets with lower magnetizations. Their broad-band photon spectra resemble those of flat spectrum radio quasars, and they are expected to be dim neutrino sources with $L_{\nu +\bar{\nu }}\ll L_{\gamma }$.

    more » « less
  2. null (Ed.)
    Abstract Measurements of the Standard Model Higgs boson decaying into a $$b\bar{b}$$ b b ¯ pair and produced in association with a W or Z boson decaying into leptons, using proton–proton collision data collected between 2015 and 2018 by the ATLAS detector, are presented. The measurements use collisions produced by the Large Hadron Collider at a centre-of-mass energy of $$\sqrt{s} = 13\,\text {Te}\text {V}$$ s = 13 Te , corresponding to an integrated luminosity of $$139\,\mathrm {fb}^{-1}$$ 139 fb - 1 . The production of a Higgs boson in association with a W or Z boson is established with observed (expected) significances of 4.0 (4.1) and 5.3 (5.1) standard deviations, respectively. Cross-sections of associated production of a Higgs boson decaying into bottom quark pairs with an electroweak gauge boson, W or Z , decaying into leptons are measured as a function of the gauge boson transverse momentum in kinematic fiducial volumes. The cross-section measurements are all consistent with the Standard Model expectations, and the total uncertainties vary from 30% in the high gauge boson transverse momentum regions to 85% in the low regions. Limits are subsequently set on the parameters of an effective Lagrangian sensitive to modifications of the WH and ZH processes as well as the Higgs boson decay into $$b\bar{b}$$ b b ¯ . 
    more » « less

    KQ Vel is a binary system composed of a slowly rotating magnetic Ap star with a companion of unknown nature. In this paper, we report the detection of its radio emission. We conducted a multifrequency radio campaign using the ATCA interferometer (band-names: 16 cm, 4 cm, and 15 mm). The target was detected in all bands. The most obvious explanation for the radio emission is that it originates in the magnetosphere of the Ap star, but this is shown unfeasible. The known stellar parameters of the Ap star enable us to exploit the scaling relationship for non-thermal gyro-synchrotron emission from early-type magnetic stars. This is a general relation demonstrating how radio emission from stars with centrifugal magnetospheres is supported by rotation. Using KQ Vel’s parameters the predicted radio luminosity is more than five orders of magnitudes lower than the measured one. The extremely long rotation period rules out the Ap star as the source of the observed radio emission. Other possible explanations for the radio emission from KQ Vel, involving its unknown companion, have been explored. A scenario that matches the observed features (i.e. radio luminosity and spectrum, correlation to X-rays) is a hierarchical stellar system, where the possible companion of the magnetic star is a close binary (possibly of RS CVn type) with at least one magnetically active late-type star. To be compatible with the total mass of the system, the last scenario places strong constraints on the orbital inclination of the KQ Vel stellar system.

    more » « less
  4. Abstract

    Despite the importance of active galactic nuclei (AGNs) in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin–Phillips–Terlevich diagrams). However, one promising avenue for identifying AGNs is “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGNs. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥5σconfidence. In our sample, we measure [Nev]λ3347,λ3427, [Fevii]λ3586,λ3760,λ6086, and [Fex]λ6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad-line, X-ray, IR, and radio observations. We find that [Nev] emission, compared to [Fevii] and [Fex] emission, is best at identifying high-luminosity AGNs. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [Oiii] luminosities in our sample, and that AGNs in the galaxies with low [Oiii] luminosities are possibly too weak to be detected using traditional techniques.

    more » « less
  5. Abstract

    Pulsar radio emission may be generated in pair discharges that fill the pulsar magnetosphere with plasma as an accelerating electric field is screened by freshly created pairs. In this Letter, we develop a simplified analytic theory for the screening of the electric field in these pair discharges and use it to estimate total radio luminosity and spectrum. The discharge has three stages. First, the electric field is screened for the first time and starts to oscillate. Next, a nonlinear phase occurs. In this phase, the amplitude of the electric field experiences strong damping because the field dramatically changes the momenta of newly created pairs. This strong damping ceases, and the system enters a final linear phase, when the electric field can no longer dramatically change pair momenta. Applied to pulsars, this theory may explain several aspects of radio emission, including the observed luminosity,Lrad∼ 1028erg s−1, and the observed spectrum,Sωω−1.4±1.0.

    more » « less