skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutrino and Antineutrino pair-Emission in Strong Magnetic Field in Relativistic Quantum Approach
We study the v\bar v\-pair emission from electrons and protons in a relativistic quantum approach. In this work we calculate the luminosity of the v\bar v\-pairs emitted from neutron-star-matter with a strong magnetic field, and find that this luminosity is much larger than that in the modified Urca process. The v\bar v\-pair emission processes in strong magnetic fields significantly contribute to the cooling of the magnetars.  more » « less
Award ID(s):
2108339 2020275
PAR ID:
10318488
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
260
ISSN:
2100-014X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsar radio emission may be generated in pair discharges that fill the pulsar magnetosphere with plasma as an accelerating electric field is screened by freshly created pairs. In this Letter, we develop a simplified analytic theory for the screening of the electric field in these pair discharges and use it to estimate total radio luminosity and spectrum. The discharge has three stages. First, the electric field is screened for the first time and starts to oscillate. Next, a nonlinear phase occurs. In this phase, the amplitude of the electric field experiences strong damping because the field dramatically changes the momenta of newly created pairs. This strong damping ceases, and the system enters a final linear phase, when the electric field can no longer dramatically change pair momenta. Applied to pulsars, this theory may explain several aspects of radio emission, including the observed luminosity,Lrad∼ 1028erg s−1, and the observed spectrum,Sω∼ω−1.4±1.0
    more » « less
  2. ABSTRACT Blazars are a rare class of active galactic nuclei (AGNs) with relativistic jets pointing towards the observer. Jets are thought to be launched as Poynting-flux dominated outflows that accelerate to relativistic speeds at the expense of the available magnetic energy. In this work, we consider electron–proton jets and assume that particles are energized via magnetic reconnection in parts of the jet where the magnetization is still high (σ ≥ 1). The magnetization and bulk Lorentz factor Γ are related to the available jet energy per baryon as μ = Γ(1 + σ). We adopt an observationally motivated relation between Γ and the mass accretion rate into the black hole $$\dot{m}$$, which also controls the luminosity of external radiation fields. We numerically compute the photon and neutrino jet emission as a function of μ and σ. We find that the blazar SED is produced by synchrotron and inverse Compton radiation of accelerated electrons, while the emission of hadronic-related processes is subdominant except for the highest magnetization considered. We show that low-luminosity blazars (Lγ ≲ 1045 erg s−1) are associated with less powerful, slower jets with higher magnetizations in the jet dissipation region. Their broad-band photon spectra resemble those of BL Lac objects, and the expected neutrino luminosity is $$L_{\nu +\bar{\nu }}\sim (0.3-1)\, L_{\gamma }$$. High-luminosity blazars (Lγ ≫ 1045 erg s−1) are associated with more powerful, faster jets with lower magnetizations. Their broad-band photon spectra resemble those of flat spectrum radio quasars, and they are expected to be dim neutrino sources with $$L_{\nu +\bar{\nu }}\ll L_{\gamma }$$. 
    more » « less
  3. We investigate the differential emission rate of neutral scalar bosons from a highly magnetized relativistic plasma. We show that three processes contribute at the leading order: particle splitting ($$\psi\rightarrow \psi+\phi $$), antiparticle splitting ($$\bar{\psi} \rightarrow \bar{\psi}+\phi $$), and particle-antiparticle annihilation ($$\psi + \bar{\psi}\rightarrow \phi $$). This is in contrast to the scenario with zero magnetic field, where only the annihilation processes contribute to boson production. We examine the impact of Landau-level quantization on the energy dependence of the rate and investigate the angular distribution of emitted scalar bosons. The differential rate resulting from both (anti)particle splitting and annihilation processes are typically suppressed in the direction of the magnetic field and enhanced in perpendicular directions. Overall, the background magnetic field significantly amplifies the total emission rate. We speculate that our model calculations provide valuable theoretical insights with potentially important applications. 
    more » « less
  4. null (Ed.)
    ABSTRACT Blazars emit a highly variable non-thermal spectrum. It is usually assumed that the same non-thermal electrons are responsible for the IR-optical-UV emission (via synchrotron) and the gamma-ray emission (via inverse Compton). Hence, the light curves in the two bands should be correlated. Orphan gamma-ray flares (i.e. lacking a luminous low-frequency counterpart) challenge our theoretical understanding of blazars. By means of large-scale two-dimensional radiative particle-in-cell simulations, we show that orphan gamma-ray flares may be a self-consistent by-product of particle energization in turbulent magnetically dominated pair plasmas. The energized particles produce the gamma-ray flare by inverse Compton scattering an external radiation field, while the synchrotron luminosity is heavily suppressed since the particles are accelerated nearly along the direction of the local magnetic field. The ratio of inverse Compton to synchrotron luminosity is sensitive to the initial strength of turbulent fluctuations (a larger degree of turbulent fluctuations weakens the anisotropy of the energized particles, thus increasing the synchrotron luminosity). Our results show that the anisotropy of the non-thermal particle population is key to modelling the blazar emission. 
    more » « less
  5. Abstract The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars. 
    more » « less