skip to main content

This content will become publicly available on March 7, 2023

Title: Oxygen Reduction Electrocatalysis with Epitaxially Grown Spinel MnFe 2 O 4 and Fe 3 O 4
Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limited more » current is achieved with Mn-based catalysis. This difference is attributed to a low density of Mn surface termination, as determined by the integration of current from CVs collected under N2, in addition to low conductivity through the MnFe2O4 film due to the degree of inversion. Such low densities are attributed to the synthetic method and island-like growth pattern and highlight challenges in studying ORR catalysis with single-crystal spinel materials. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1809847 2018794
Publication Date:
NSF-PAR ID:
10318625
Journal Name:
ACS Catalysis
Volume:
12
ISSN:
2155-5435
Sponsoring Org:
National Science Foundation
More Like this
  1. Halide vapor phase epitaxial (HVPE) Ga 2 O 3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga 2 O 3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga 2 O 3 (nc-β-Ga 2 O 3 ) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga 2 O 3 on sapphire but failed to detect any β-Ga 2 O 3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga 2 O 3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga 2 O 3 /sapphire and nc-Ga 2 O 3 /diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV.
  2. Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly.
  3. Epitaxial thin films of cobalt ferrite (CoFe2O4) are grown on two isostructural substrates, (001)-oriented MgGa2O4and ZnGa2O4, using pulsed laser deposition. The substrates have a lattice mismatch of 1.26% and 0.70% with bulk CoFe2O4(CFO) crystal. We have systematically investigated the structural and magnetic properties of the epitaxial CFO films on these substrates. X-ray diffraction and transmission electron microscopy result analysis reveal that the films deposited on spinel ZnGa2O4are essentially free of defects and are under a small compressive strain, while films on MgGa2O4show partial strain relaxation along with defect formation. Room temperature magnetization data indicate that CFO grown on ZnGa2O4substrates have a bulk-like saturation magnetization of 420 emu/cc and a uniaxial substrate-induced anisotropy value of [Formula: see text] [Formula: see text] erg/cm3with an anisotropy field as low as 60 kOe.

  4. Exposure testing was performed on CoCrFeMnNi equiatomic high entropy alloy (HEA) produced via directed energy deposition additive manufacturing in NaNO3-KNO3(60–40 wt%) molten salt at 500 °C for 50 h to evaluate the corrosion performance and oxide film chemistry of the HEA. Potentiodynamic electrochemical corrosion testing, scanning electron microscopy, focused ion beam milling coupled with energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy were used to analyze the corrosion behavior and chemistry of the HEA/nitrate molten salt system. The CoCrFeMnNi HEA exhibited a higher passive current density during potentiodynamic polarization testing than steel alloys SS316L and 4130 and the high-Ni alloy 800 H in identical conditions. The oxide film was primarily composed of a (Mn,Co,Ni)Fe2O4spinel with a vertical plate-like morphology at the surface. Cr and Ni were found to be totally depleted at the outer surface of the oxide and dissolved in high concentrations in the molten salt. While Cr was expected to dissolve into the molten salt, the high concentration of dissolved Ni has not been observed with traditional alloys, suggesting that Ni is less stable in the spinel when Mn and Co are present.

  5. The inverse spinel ferrimagnetic NiCo 2 O 4 possesses high magnetic Curie temperature T C , high spin polarization, and strain-tunable magnetic anisotropy. Understanding the thickness scaling limit of these intriguing magnetic properties in NiCo 2 O 4 thin films is critical for their implementation in nanoscale spintronic applications. In this work, we report the unconventional magnetotransport properties of epitaxial (001) NiCo 2 O 4 films on MgAl 2 O 4 substrates in the ultrathin limit. Anomalous Hall effect measurements reveal strong perpendicular magnetic anisotropy for films down to 1.5 unit cell (1.2 nm), while T C for 3 unit cell and thicker films remains above 300 K. The sign change in the anomalous Hall conductivity [Formula: see text] and its scaling relation with the longitudinal conductivity ([Formula: see text]) can be attributed to the competing effects between impurity scattering and band intrinsic Berry curvature, with the latter vanishing upon the thickness driven metal–insulator transition. Our study reveals the critical role of film thickness in tuning the relative strength of charge correlation, Berry phase effect, spin–orbit interaction, and impurity scattering, providing important material information for designing scalable epitaxial magnetic tunnel junctions and sensing devices using NiCo 2 O 4 .