Properties in material composition and crystal structures have been explored by density functional theory (DFT) calculations, using databases such as the Open Quantum Materials Database (OQMD). Databases like these have been used currently for the training of advanced machine learning and deep neural network models, the latter providing higher performance when predicting properties of materials. However, current alternatives have shown a deterioration in accuracy when increasing the number of layers in their architecture (over-fitting problem). As an alternative method to address this problem, we have implemented residual neural network architectures based on Merge and Run Networks, IRNet and UNet to improve performance while relaxing the observed network depth limitation. The evaluation of the proposed architectures include a 9:1 ratio to train and test as well as 10 fold cross validation. In the experiments we found that our proposed architectures based on IRNet and UNet are able to obtain a lower Mean Absolute Error (MAE) than current strategies. The full implementation (Python, Tensorflow and Keras) and the trained networks will be available online for community validation and advancing the state of the art from our findings.
more »
« less
Extensible Structure-Informed Prediction of Formation Energy with improved accuracy and usability employing neural networks
In the present paper, we introduce a new neural network-based tool for the prediction of formation energies of atomic structures based on elemental and structural features of Voronoi-tessellated materials. We provide a concise overview of the connection between the machine learning and the true material–property relationship, how to improve the generalization accuracy by reducing overfitting, how new data can be incorporated into the model to tune it to a specific material system, and preliminary results on using models to preform local structure relaxations. The present work resulted in three final models optimized for (1) highest test accuracy on the Open Quantum Materials Database (OQMD), (2) performance in the discovery of new materials, and (3) performance at a low computational cost. On a test set of 21,800 compounds randomly selected from OQMD, they achieve a mean absolute error (MAE) of 28, 40, and 42 meV/atom, respectively. The second model provides better predictions in a test case of interest not present in the OQMD, while the third reduces the computational cost by a factor of 8. We collect our results in a new open-source tool called SIPFENN (Structure-Informed Prediction of Formation Energy using Neural Networks). SIPFENN not only improves the accuracy beyond existing models but also ships in a ready-to-use form with pre-trained neural networks and a GUI interface. By virtue of this, it can be included in DFT calculations routines at nearly no cost.
more »
« less
- Award ID(s):
- 2050069
- PAR ID:
- 10318666
- Date Published:
- Journal Name:
- Computational materials science
- ISSN:
- 1879-0801
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Modern data mining techniques using machine learning (ML) and deep learning (DL) algorithms have been shown to excel in the regression-based task of materials property prediction using various materials representations. In an attempt to improve the predictive performance of the deep neural network model, researchers have tried to add more layers as well as develop new architectural components to create sophisticated and deep neural network models that can aid in the training process and improve the predictive ability of the final model. However, usually, these modifications require a lot of computational resources, thereby further increasing the already large model training time, which is often not feasible, thereby limiting usage for most researchers. In this paper, we study and propose a deep neural network framework for regression-based problems comprising of fully connected layers that can work with any numerical vector-based materials representations as model input. We present a novel deep regression neural network, iBRNet, with branched skip connections and multiple schedulers, which can reduce the number of parameters used to construct the model, improve the accuracy, and decrease the training time of the predictive model. We perform the model training using composition-based numerical vectors representing the elemental fractions of the respective materials and compare their performance against other traditional ML and several known DL architectures. Using multiple datasets with varying data sizes for training and testing, We show that the proposed iBRNet models outperform the state-of-the-art ML and DL models for all data sizes. We also show that the branched structure and usage of multiple schedulers lead to fewer parameters and faster model training time with better convergence than other neural networks. Scientific contribution: The combination of multiple callback functions in deep neural networks minimizes training time and maximizes accuracy in a controlled computational environment with parametric constraints for the task of materials property prediction.more » « less
-
CuZrO 3 has been hypothesized to be a catalytic material with potential applications for CO 2 reduction. Unfortunately, this material has received limited attention in the literature, and to the best of our knowledge the exact crystal structure is still unknown. To address this challenge, we utilize several different structural prediction techniques in concert, including the Universal Structure Predictor: Evolutionary Xtallography (USPEX), the Materials Project Structure Predictor, and the Open Quantum Materials Database (OQMD). Leveraging these structural prediction techniques in conjunction with Density-Functional Theory (DFT) calculations, we determine a possible structure for CuZrO 3 , which resembles a “sandwich” morphology. Our calculations reveal that this new structure is significantly lower in energy than a previously hypothesized perovskite structure, albeit it still has a thermodynamic preference to decompose into CuO and ZrO 2 . In addition, we experimentally tried to synthesize CuZrO 3 based on literature reports and compared computational to experimental X-ray Diffraction (XRD) patterns confirming that the final product is a mixture of CuO and ZrO 2 . Finally, we conducted a computational surface energetics and CO 2 adsorption study on our discovered sandwich morphology, demonstrating that CO 2 can adsorb and activate on the material. However, these CO 2 adsorption results deviate from previously reported results further confirming that the CuZrO 3 is a metastable form and may not be experimentally accessible as a well-mixed oxide, since phase segregation to CuO and ZrO 2 is preferred. Taken together, our combined computational and experimental study provides evidence that the synthesis of CuZrO 3 is extremely difficult and if this oxide exists, it should have a sandwich-like morphology.more » « less
-
null (Ed.)Abstract Deep neural networks (DNNs) have achieved state-of-the-art performance in many important domains, including medical diagnosis, security, and autonomous driving. In domains where safety is highly critical, an erroneous decision can result in serious consequences. While a perfect prediction accuracy is not always achievable, recent work on Bayesian deep networks shows that it is possible to know when DNNs are more likely to make mistakes. Knowing what DNNs do not know is desirable to increase the safety of deep learning technology in sensitive applications; Bayesian neural networks attempt to address this challenge. Traditional approaches are computationally intractable and do not scale well to large, complex neural network architectures. In this paper, we develop a theoretical framework to approximate Bayesian inference for DNNs by imposing a Bernoulli distribution on the model weights. This method called Monte Carlo DropConnect (MC-DropConnect) gives us a tool to represent the model uncertainty with little change in the overall model structure or computational cost. We extensively validate the proposed algorithm on multiple network architectures and datasets for classification and semantic segmentation tasks. We also propose new metrics to quantify uncertainty estimates. This enables an objective comparison between MC-DropConnect and prior approaches. Our empirical results demonstrate that the proposed framework yields significant improvement in both prediction accuracy and uncertainty estimation quality compared to the state of the art.more » « less
-
Abstract High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.more » « less
An official website of the United States government

