skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materials synthesizability and stability prediction using a semi-supervised teacher-student dual neural network
Data driven generative deep learning models have recently emerged as one of the most promising approaches for new materials discovery. While generator models can generate millions of candidates, it is critical to train fast and accurate machine learning models to filter out stable, synthesizable materials with the desired properties. However, such efforts to build supervised regression or classification screening models have been severely hindered by the lack of unstable or unsynthesizable samples, which usually are not collected and deposited in materials databases such as ICSD and Materials Project (MP). At the same time, there is a significant amount of unlabelled data available in these databases. Here we propose a semi-supervised deep neural network (TSDNN) model for high-performance formation energy and synthesizability prediction, which is achieved via its unique teacher-student dual network architecture and its effective exploitation of the large amount of unlabeled data. For formation energy based stability screening, our semi-supervised classifier achieves an absolute 10.3% accuracy improvement compared to the baseline CGCNN regression model. For synthesizability prediction, our model significantly increases the baseline PU learning's true positive rate from 87.9% to 92.9% using 1/49 model parameters. To further prove the effectiveness of our models, we combined our TSDNN-energy and TSDNN-synthesizability models with our CubicGAN generator to discover novel stable cubic structures. Out of the 1000 recommended candidate samples by our models, 512 of them have negative formation energies as validated by our DFT formation energy calculations. Our experimental results show that our semi-supervised deep neural networks can significantly improve the screening accuracy in large-scale generative materials design. Our source code can be accessed at https://git/hub.com/usccolumbia/tsdnn.  more » « less
Award ID(s):
2110033
PAR ID:
10426730
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Digital Discovery
Volume:
2
Issue:
2
ISSN:
2635-098X
Page Range / eLocation ID:
377 to 391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we generalize semi-supervised generative adversarial networks (GANs) from classification problems to regression for use in dense crowd counting. In the last several years, the importance of improving the training of neural networks using semi-supervised training has been thoroughly demonstrated for classification problems. This work presents a dual-goal GAN which seeks both to provide the number of individuals in a densely crowded scene and distinguish between real and generated images. This method allows the dual-goal GAN to benefit from unlabeled data in the training process, improving the predictive capabilities of the discriminating network compared to the fully-supervised version of the network. Typical semi-supervised GANs are unable to function in the regression regime due to biases introduced when using a single prediction goal. Using the proposed approach, the amount of data which needs to be annotated for dense crowd counting can be significantly reduced. 
    more » « less
  2. Topic models are some of the most popular ways to represent textual data in an interpret- able manner. Recently, advances in deep gen- erative models, specifically auto-encoding vari- ational Bayes (AEVB), have led to the intro- duction of unsupervised neural topic models, which leverage deep generative models as op- posed to traditional statistics-based topic mod- els. We extend upon these neural topic models by introducing the Label-Indexed Neural Topic Model (LI-NTM), which is, to the extent of our knowledge, the first effective upstream semi- supervised neural topic model. We find that LI- NTM outperforms existing neural topic models in document reconstruction benchmarks, with the most notable results in low labeled data regimes and for data-sets with informative la- bels; furthermore, our jointly learned classi- fier outperforms baseline classifiers in ablation studies. 
    more » « less
  3. Abstract Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts’ heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700% compared to FTCP, one of the latest structure generators and by more than 45% compared to our previous CubicGAN model. Density Functional Theory (DFT) calculations are used to validate the generated structures with 1869 materials out of 2000 are successfully optimized and deposited into the Carolina Materials Databasewww.carolinamatdb.org, of which 39.6% have negative formation energy and 5.3% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability. 
    more » « less
  4. null (Ed.)
    Two-dimensional (2D) materials have emerged as promising functional materials with many applications such as semiconductors and photovoltaics because of their unique optoelectronic properties. Although several thousand 2D materials have been screened in existing materials databases, discovering new 2D materials remains challenging. Herein, we propose a deep learning generative model for composition generation combined with a random forest-based 2D materials classifier to discover new hypothetical 2D materials. Furthermore, a template-based element substitution structure prediction approach is developed to predict the crystal structures of a subset of the newly predicted hypothetical formulas, which allows us to confirm their structure stability using DFT calculations. So far, we have discovered 267 489 new potential 2D materials compositions, where 1485 probability scores are more then 0.95. Among them, we have predicted 101 crystal structures and confirmed 92 2D/layered materials by DFT formation energy calculation. Our results show that generative machine learning models provide an effective way to explore the vast chemical design space for new 2D materials discovery. 
    more » « less
  5. Abstract High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org. 
    more » « less