skip to main content

This content will become publicly available on June 1, 2023

Title: From occupants to occupants: A review of the occupant information understanding for building HVAC occupant-centric control
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Building Simulation
Sponsoring Org:
National Science Foundation
More Like this
  1. Workers' performance in indoor offices can be greatly affected by the thermal condition of the environment. However, this effect can be difficult to quantify, especially when the thermal stress is a moderate increase or decrease in temperature and the work productivity cannot be directly measured. Subjects' high motivation to perform well under experimental conditions also causes difficulties in comparing their performance in different thermal environments. In order to overcome these limitations, this paper proposes a method to investigate the effect of the indoor thermal conditions on occupants' performance by studying occupants' mental workload measured by the electroencephalography (EEG) when they perform standardized cognitive tasks. An experiment integrating EEG mental workload measurement and cognitive tasks was implemented on 15 subjects. EEG data were collected while subjects were performing four cognitive tasks on computers. Based on previous studies, we propose a mental workload index calculated from the frontal theta and parietal alpha frequency band power. Within-subject comparisons were performed to investigate whether subjects' mental workload is statistically different under three different thermal environments, representing thermal sensations of slightly cool, neutral, and slightly warm. The results show that the effect of thermal environment varies across different individuals. By comparing the mental workload indexmore »among different thermal environments, we found that the slightly warm environment resulted in a relatively higher mental workload than the other two environments to achieve the same performance. The study provides promising insights into how the thermal environment influences occupants’ performance by affecting their mental workload from the neurophysiological perspective.« less
  2. During high-speed rear impacts with delta-V > 25 km/h, the front seats may rotate rearward due to occupant and seat momentum change leading to possibly large seat deflection. One possible way of limiting this may be by introducing a structure that would restrict large rotations or deformations, however, such a structure would change the front seat occupant kinematics and kinetics. The goal of this study was to understand the influence of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact. This was done by simulating a rear impact scenario with a delta-V of 37.4 km/h using LS-Dyna, with the GHBMC M50 occupant model and a manufacturer provided seat model. The study included two parts, the first part was to identify worst case scenarios using the simplified GHBMC M50-OS, and the second part was to further investigate the identified scenarios using the detailed GHBMC M50-O. The baseline condition included running the belted GHBMC on the seat at the specified pulse. This was followed by including a seatback constraint, a restriction bar, at 65 mm from the seat back to restrict rearward movement. Four different scenarios were investigated using the GHBMCmore »M50-OS for the first part of the study both in the baseline and inclusion of a restriction bar behind the seatback: occupant seated normally; occupant offset on the seat; occupant rotated on the seat; and occupant seated normally but at a slightly oblique rear impact direction. The oblique condition was identified as the worst-case scenario based on the inter-vertebral kinematics; therefore, this condition was further investigated in the simulations with GHBMC M50-O. In the oblique rear impact scenario, the head missed the head restraint leading to inter-vertebral rotations exceeding the physiological range of motions regardless of the restriction bar use. However, adding a restriction bar behind the seat back showed a higher HIC and BrIC in both normal and oblique pulses due to the sudden stop, although the magnitudes were below the threshold.« less