skip to main content


Title: On the edit distance function of the random graph
Abstract Given a hereditary property of graphs $\mathcal{H}$ and a $p\in [0,1]$ , the edit distance function $\textrm{ed}_{\mathcal{H}}(p)$ is asymptotically the maximum proportion of edge additions plus edge deletions applied to a graph of edge density p sufficient to ensure that the resulting graph satisfies $\mathcal{H}$ . The edit distance function is directly related to other well-studied quantities such as the speed function for $\mathcal{H}$ and the $\mathcal{H}$ -chromatic number of a random graph. Let $\mathcal{H}$ be the property of forbidding an Erdős–Rényi random graph $F\sim \mathbb{G}(n_0,p_0)$ , and let $\varphi$ represent the golden ratio. In this paper, we show that if $p_0\in [1-1/\varphi,1/\varphi]$ , then a.a.s. as $n_0\to\infty$ , \begin{align*} {\textrm{ed}}_{\mathcal{H}}(p) = (1+o(1))\,\frac{2\log n_0}{n_0} \cdot\min\left\{ \frac{p}{-\log(1-p_0)}, \frac{1-p}{-\log p_0} \right\}. \end{align*} Moreover, this holds for $p\in [1/3,2/3]$ for any $p_0\in (0,1)$ . A primary tool in the proof is the categorization of p -core coloured regularity graphs in the range $p\in[1-1/\varphi,1/\varphi]$ . Such coloured regularity graphs must have the property that the non-grey edges form vertex-disjoint cliques.  more » « less
Award ID(s):
1839918
NSF-PAR ID:
10318851
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Combinatorics, Probability and Computing
Volume:
31
Issue:
2
ISSN:
0963-5483
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $K$ and $L$ be star bodies in ${\mathbb R}^n,$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $K$ and $L$, respectively, so that $\|g\|_\infty =g(0)=1.$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $C$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of ${\mathbb R}^n,$ and $d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$ is the outer volume ratio distance from $K$ to the class of generalized $k$-intersection bodies in ${\mathbb R}^n.$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less
  2. Let $\Omega_q$ denote the set of proper $[q]$-colorings of the random graph $G_{n,m}, m=dn/2$ and let $H_q$ be the graph with vertex set $\Omega_q$ and an edge $\set{\s,\t}$ where $\s,\t$ are mappings $[n]\to[q]$ iff $h(\s,\t)=1$. Here $h(\s,\t)$ is the Hamming distance $|\set{v\in [n]:\s(v)\neq\t(v)}|$. We show that w.h.p. $H_q$ contains a single giant component containing almost all colorings in $\Omega_q$ if $d$ is sufficiently large and $q\geq \frac{cd}{\log d}$ for a constant $c>3/2$. 
    more » « less
  3. Abstract The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that if G is a countable discrete abelian group and $\varphi , \psi : G \to G$ are homomorphisms, such that at least two of the three subgroups $\varphi (G)$ , $\psi (G)$ and $(\psi -\varphi )(G)$ have finite index in G , then $\{\varphi , \psi \}$ has the large intersections property . That is, for any ergodic measure preserving system $\textbf {X}=(X,\mathcal {X},\mu ,(T_g)_{g\in G})$ , any $A\in \mathcal {X}$ and any $\varepsilon>0$ , the set $$ \begin{align*} \{g\in G : \mu(A\cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A)>\mu(A)^3-\varepsilon\} \end{align*} $$ is syndetic (Theorem 1.11). Moreover, in the special case where $\varphi (g)=ag$ and $\psi (g)=bg$ for $a,b\in \mathbb {Z}$ , we show that we only need one of the groups $aG$ , $bG$ or $(b-a)G$ to be of finite index in G (Theorem 1.13), and we show that the property fails, in general, if all three groups are of infinite index (Theorem 1.14). One particularly interesting case is where $G=(\mathbb {Q}_{>0},\cdot )$ and $\varphi (g)=g$ , $\psi (g)=g^2$ , which leads to a multiplicative version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms $\varphi ,\psi $ that have the large intersections property when $G = {{\mathbb Z}}^2$ . The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the multiple ergodic averages $$ \begin{align*} \frac{1}{|\Phi_N|} \sum_{g\in \Phi_N}T_{\varphi(g)}f_1\cdot T_{\psi(g)} f_2. \end{align*} $$ In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor . In this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by passing to an extension of $\textbf {X}$ , one can describe the characteristic factor in terms of the Conze–Lesigne factor and the $\sigma $ -algebras of $\varphi (G)$ and $\psi (G)$ invariant functions (Theorem 4.10). 
    more » « less
  4. Abstract Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n -vertex graph of minimum degree at least d , then $$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$ In this paper the main result is that if G is any n -vertex d -regular graph of girth at least five, then $$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$ for some constant c independent of d . This result is sharp in the sense that as $d \rightarrow \infty$ , almost all d -regular n -vertex graphs G of girth at least five have $$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$ Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$ , then ${\gamma_\circ}(G) = \frac{n}{2}$ . We also prove that there are n -vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$ . Therefore both the girth and regularity conditions are required for the main result. 
    more » « less
  5. null (Ed.)
    Abstract We show how to construct a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner over a set $${P}$$ P of n points in $${\mathbb {R}}^d$$ R d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$ ϑ , ε ∈ ( 0 , 1 ) , the computed spanner $${G}$$ G has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$ O ( ε - O ( d ) ϑ - 6 n ( log log n ) 6 log n ) edges. Furthermore, for any k , and any deleted set $${{B}}\subseteq {P}$$ B ⊆ P of k points, the residual graph $${G}\setminus {{B}}$$ G \ B is a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner for all the points of $${P}$$ P except for $$(1+{\vartheta })k$$ ( 1 + ϑ ) k of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$ O ( n 2 ) edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$ ϑ | B | , lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion. 
    more » « less