Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in {\zeta(s)}. For example, integrating {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than {\frac{1}{\log T}}and {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function.
more »
« less
Large Deviation Estimates of Selberg’s Central Limit Theorem and Applications
Abstract For $$V\sim \alpha \log \log T$$ with $$0<\alpha <2$$, we prove $$\begin{align*} & \frac{1}{T}\textrm{meas}\{t\in [T,2T]: \log|\zeta(1/2+ \textrm{i} t)|>V\}\ll \frac{1}{\sqrt{\log\log T}} e^{-V^{2}/\log\log T}. \end{align*}$$This improves prior results of Soundararajan and of Harper on the large deviations of Selberg’s Central Limit Theorem in that range, without the use of the Riemann hypothesis. The result implies the sharp upper bound for the fractional moments of the Riemann zeta function proved by Heap, Radziwiłł, and Soundararajan. It also shows a new upper bound for the maximum of the zeta function on short intervals of length $$(\log T)^{\theta }$$, $$0<\theta <3$$, that is expected to be sharp for $$\theta> 0$$. Finally, it yields a sharp upper bound (to order one) for the moments on short intervals, below and above the freezing transition. The proof is an adaptation of the recursive scheme introduced by Bourgade, Radziwiłł, and one of the authors to prove fine asymptotics for the maximum on intervals of length $$1$$.
more »
« less
- PAR ID:
- 10457115
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider negative moments of quadratic Dirichlet $$L$$–functions over function fields. Summing over monic square-free polynomials of degree $2g+1$ in $$\mathbb{F}_{q}[x]$$, we obtain an asymptotic formula for the $$k^{\textrm{th}}$$ shifted negative moment of $$L(1/2+\beta ,\chi _{D})$$, in certain ranges of $$\beta $$ (e.g., when roughly $$\beta \gg \log g/g $$ and $k<1$). We also obtain non-trivial upper bounds for the $$k^{\textrm{th}}$$ shifted negative moment when $$\log (1/\beta ) \ll \log g$$. Previously, almost sharp upper bounds were obtained in [ 3] in the range $$\beta \gg g^{-\frac{1}{2k}+\epsilon }$$.more » « less
-
Abstract We study three integrals related to the celebrated pair correlation conjecture of H. L. Montgomery. The first is the integral of Montgomery’s function F ( α , T ) {F(\alpha,T)} in bounded intervals, the second is an integral introduced by Selberg related to estimating the variance of primes in short intervals, and the last is the second moment of the logarithmic derivative of the Riemann zeta-function near the critical line. The conjectured asymptotic for any of these three integrals is equivalent to Montgomery’s pair correlation conjecture. Assuming the Riemann hypothesis, we substantially improve the known upper and lower bounds for these integrals by introducing new connections to certain extremal problems in Fourier analysis. In an appendix, we study the intriguing problem of establishing the sharp form of an embedding between two Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture.more » « less
-
Abstract Let $$k_i\ (i=1,2,\ldots ,t)$$ be natural numbers with $$k_1>k_2>\cdots >k_t>0$$, $$k_1\geq 2$$ and $$t<k_1.$$ Given real numbers $$\alpha _{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$$, we consider polynomials of the shape $$\begin{align*} &\varphi_i(x)=\alpha_{1i}x^{k_1}+\alpha_{2i}x^{k_2}+\cdots+\alpha_{ti}x^{k_t},\end{align*}$$and derive upper bounds for fractional parts of polynomials in the shape $$\begin{align*} &\varphi_1(x_1)+\varphi_2(x_2)+\cdots+\varphi_s(x_s),\end{align*}$$by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our results improve on earlier Theorems of Baker (2017).more » « less
-
Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem.more » « less
An official website of the United States government

