skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of cyclic loading at elevated temperatures on the magnetic susceptibility of a magnetite-bearing ore
SUMMARY Cyclic loading at elevated temperatures occurs either naturally during tectonic or volcanic-induced earthquakes or can be human-induced due to various geological engineering activities. The aim of this study is to test if mechanical fatigue in rocks can be monitored by magnetic methods. For this purpose, the effect of cyclic-mechanical loading (150 ± 30 MPa) on the magnetic susceptibility and its anisotropy of a magnetite-bearing ore with varying temperatures (400 and 500 °C) and environment (air and vacuum) was investigated. Our study shows that magnetic susceptibility decreases significantly (up to 23 per cent) under air conditions and in vacuum (up to 4 per cent) within the first ca. 1000 cycles. Further loading does not significantly affect the magnetic susceptibility which then remains more or less constant. The decrease of susceptibility parameters is stronger at 500 °C compared to 400 °C under both experimental conditions. Magnetic susceptibility was always measured after decompression of the loaded sample at room temperature so that magnetostriction can be excluded as a reason for these changes. The higher the temperature at which samples were loaded the more pronounced is the oxidation of magnetite to haematite. The transformation of magnetite into haematite under ambient conditions is the most important mechanism influencing bulk magnetic properties. The weak changes in magnetic susceptibility after vacuum loadings are probably caused by intragranular microcracks formed on the surface of magnetite grains. These surface deformation structures are accompanied by the refinement of magnetic domains, which is observed by magnetic force microscopy. Bulk magnetic grain size modifications are also confirmed by hysteresis parameters as well as by the increasing Hopkinson peak ratios determined from magnetic susceptibility measurements over Curie point. The degree of magnetic anisotropy and shape factor only change for the air-treated samples and are therefore related to the haematite formation and not to irreversible ductile deformation in magnetite. Our experimental study shows that cyclic loading can change significantly the magnetic properties of a rock due to mineral transformation below < 1000 cycles and that the first stages of mechanical fatigue, which are a precursor of the failure of rock, are closely associated with these transformations.  more » « less
Award ID(s):
1642268
PAR ID:
10318861
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
228
Issue:
2
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fatigue arising from cyclic straining is a key factor in the degradation of properties of engineered materials and structures. Fatigue can also induce damage and fracture in natural biomaterials, such as bone, and in synthetic biomaterials used in implant devices. However, the mechanisms by which mechanical fatigue leads to deterioration of physical properties and contributes to the onset and progression of pathological states in biological cells have hitherto not been systematically explored. Here we present a general method that employs amplitude-modulated electrodeformation and microfluidics for characterizing mechanical fatigue in single biological cells. This method is capable of subjecting cells to static loads for prolonged periods of time or to large numbers of controlled mechanical fatigue cycles. We apply the method to measure the systematic changes in morphological and biomechanical characteristics of healthy human red blood cells (RBCs) and their membrane mechanical properties. Under constant amplitude cyclic tensile deformation, RBCs progressively lose their ability to stretch with increasing fatigue cycles. Our results further indicate that loss of deformability of RBCs during cyclic deformation is much faster than that under static deformation at the same maximum load over the same accumulated loading time. Such fatigue-induced deformability loss is more pronounced at higher amplitudes of cyclic deformation. These results uniquely establish the important role of mechanical fatigue in influencing physical properties of biological cells. They further provide insights into the accumulated membrane damage during blood circulation, paving the way for further investigations of the eventual failure of RBCs causing hemolysis in various hemolytic pathologies. 
    more » « less
  2. The present work investigates fracture toughness, and actuation and mechanical fatigue crack growth responses of Ni50.3Ti29.7Hf20 HTSMAs across martensitic transformation with two different microstructures, one with H-phase nanoprecipitates and one without. H-phase precipitation is known to stabilize the actuation cycling response of NiTiHf HTSMAs and notably impacts transformation-induced plasticity. The fracture toughness tests performed reveal that precipitate-free NiTiHf has a higher fracture toughness and undergoes significantly more inelastic deformation than the one with the precipitates resulting in toughness enhancement, i.e., stable crack advance during fracture toughness experiments, which is not observed in the precipitated NiTiHf for the crack configuration and loading conditions tested. Furthermore, the precipitate free NiTiHf has higher actuation and mechanical fatigue crack growth resistance than the precipitation-hardened microstructure. This is attributed to plasticity buildup, which exacerbates the manifestation of retained martensite upon repeated transformations. The fatigue crack growth rates obtained from both actuation and mechanical fatigue experiments align to a single Paris Law Curve for the precipitation-hardened NiTiHf. This work aims to determine if unified Paris Law curves can be generated from mechanical and actuation fatigue experiments, irrespective of composition and microstructure, to estimate actuation fatigue crack growth rates, laborious and challenging to measure, from easier to detect mechanical fatigue crack growth rates. 
    more » « less
  3. Abstract The electrical resistance of metal-polymer conductive inks increases as they undergo cyclic loading, posing a major challenge to their reliability as interconnect materials for flexible electronic devices. To characterize an ink’s fatigue performance, extensive electro-mechanical testing is usually performed. Phenomenological models that can accurately predict the resistance increase with cyclic loading can save time and be useful in flexible conductor design against fatigue failure. One such model was recently developed for only one composite ink type. The model is based on experiments monitoring resistance under monotonic stretch data and multiple experiments measuring the rate of increase of the resistance under different strain amplitudes and mean strains. The current work examines whether such resistance rate model could be generalized to apply for more types of composite inks. Two composite inks with different binder material, metal flake sizes and shapes, and substrate material were experimentally tested under monotonic and cyclic loading. It was found that the two new inks are also more sensitive to strain amplitude than mean strain. The resistance rate model accurately predicts early/catastrophic failure (<1000 cycles) in all inks and conservatively estimates high fatigue life for low strain amplitudes. A protocol detailing the procedures for applying the resistance model to new inks is outlined. 
    more » « less
  4. Abstract 2D hybrid organic–inorganic perovskites (HOIPs) are commonly found under subcritical cyclic stresses and suffer from fatigue issues during device operation. However, their fatigue properties remain unknown. Here, the fatigue behavior of (C4H9‐NH3)2(CH3NH3)2Pb3I10, the archetype 2D HOIP, is systematically investigated by atomic force microscopy (AFM). It is found that 2D HOIPs are much more fatigue resilient than polymers and can survive over 1 billion cycles. 2D HOIPs tend to exhibit brittle failure at high mean stress levels, but behave as ductile materials at low mean stress levels. These results suggest the presence of a plastic deformation mechanism in these ionic 2D HOIPs at low mean stress levels, which may contribute to the long fatigue lifetime, but is inhibited at higher mean stresses. The stiffness and strength of 2D HOIPs are gradually weakened under subcritical loading, potentially as a result of stress‐induced defect nucleation and accumulation. The cyclic loading component can further accelerate this process. The fatigue lifetime of 2D HOIPs can be extended by reducing the mean stress, stress amplitude, or increasing the thickness. These results can provide indispensable insights into designing and engineering 2D HOIPs and other hybrid organic–inorganic materials for long‐term mechanical durability. 
    more » « less
  5. SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffraction was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additional sources of high coercivity in the bulk sample. The VSM hysteresis measurements of the orthopyroxene were dominated by multidomain (MD) magnetite, whereas the FIB location was chosen to avoid MD particles and thus contains only particles with diameters <500 nm that are considered to be the most important carriers of palaeomagnetic remanence. To correct for this sampling bias, measured MD hysteresis loops from synthetic and natural magnetites were combined with the average hysteresis loop from the MERRILL models of the FIB region. The result shows that while the modelled small-particle fraction only explains 6 per cent of the best fit to the measured VSM hysteresis loop, it contributes 28 per cent of the remanent magnetization. The modelled direction of maximal Mrs/Ms in plagioclase is subparallel to [001]plag, whereas Hc does not show a strong orientation dependence. The easy axis of magnetic remanence is in the direction of the magnetite population normal to (150)plag and the maximum calculated susceptibility (χ*) is parallel to [010]plag. For orthopyroxene, the maximum Mrs/Ms, maximum χ* and the easy axis of remanence is strongly correlated to the elongation axes of magnetite in the [001]opx direction. The maximum Hc is oriented along [100]opx and parallel to the minimum χ*, which reflects larger vortex nucleation fields when the applied field direction approaches the short axis. The maximum Hc is therefore orthogonal to the maximum Mrs/Ms, controlled by axis-aligned metastable single-domain states at zero field. The results emphasize that the nature of anisotropy in natural magnetite does not just depend on the particle orientations, but on the presence of different stable and metastable domain states, and the mechanism of magnetic switching between them. Magnetic modelling of natural magnetic particles is therefore a vital method to extract and process anisotropic hysteresis parameters directly from the primary remanence carriers. 
    more » « less