skip to main content

Title: Deep Learning Based Multi-Label Attack Detection for Distributed Control of AC Microgrids
This paper presents a deep learning based multi-label attack detection approach for the distributed control in AC microgrids. The secondary control of AC microgrids is formulated as a constrained optimization problem with voltage and frequency as control variables which is then solved using a distributed primal-dual gradient algorithm. The normally distributed false data injection (FDI) attacks against the proposed distributed control are then designed for the distributed gener-ator's output voltage and active/reactive power measurements. In order to detect the presence of false measurements, a deep learning based attack detection strategy is further developed. The proposed attack detection is formulated as a multi-label classification problem to capture the inconsistency and co-occurrence dependencies in the power flow measurements due to the presence of FDI attacks. With this multi-label classification scheme, a single model is able to identify the presence of different attacks and load change simultaneously. Two different deep learning techniques are compared to design the attack detector, and the performance of the proposed distributed control and the attack detector is demonstrated through simulations on the modified IEEE 34-bus distribution test system.
Authors:
; ; ; ;
Award ID(s):
2103426 2017597
Publication Date:
NSF-PAR ID:
10318998
Journal Name:
2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a resilient control framework for distributed frequency and voltage control of AC microgrids under data manipulation attacks. In order for each distributed energy resource (DER) to detect any misbehavior on its neighboring DERs, an attack detection mechanism is first presented using a Kullback-Liebler (KL) divergence-based criterion. An attack mitigation technique is then proposed that utilizes the calculated KL divergence factors to determine trust values indicating the trustworthiness of the received information. Moreover, DERs continuously generate a self-belief factor and communicate it with their neighbors to inform them of the validity level of their own outgoing information. DERs incorporate their neighbors' self-belief and their own trust values in their control protocols to slow down and mitigate attacks. It is shown that the proposed cyber-secure control effectively distinguishes data manipulation attacks from legitimate events. The performance of proposed secure frequency and voltage control techniques is verified through the simulation of microgrid tests system implemented on IEEE 34-bus test feeder with six DERs.
  2. Intelligently designed false data injection (FDI) attacks have been shown to be able to bypass the chi-squared-test based bad data detector (BDD), resulting in physical consequences (such as line overloads) in the power system. In this paper, using synthetic PMU measurements and intelligently designed FDI attacks, it is shown that if an attack is suddenly injected into the system, a predictive filter with sufficient accuracy is able to detect it. However, an attacker can gradually increase the magnitude of the attack to avoid detection, and still cause damage to the system.
  3. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms amore »single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks.« less
  4. Controllers of security-critical cyber-physical systems, like the power grid, are a very important class of computer systems. Attacks against the control code of a power-grid system, especially zero-day attacks, can be catastrophic. Earlier detection of the anomalies can prevent further damage. However, detecting zero-day attacks is extremely challenging because they have no known code and have unknown behavior. Furthermore, if data collected from the controller is transferred to a server through networks for analysis and detection of anomalous behavior, this creates a very large attack surface and also delays detection. In order to address this problem, we propose Reconstruction Error Distribution (RED) of Hardware Performance Counters (HPCs), and a data-driven defense system based on it. Specifically, we first train a temporal deep learning model, using only normal HPC readings from legitimate processes that run daily in these power-grid systems, to model the normal behavior of the power-grid controller. Then, we run this model using real-time data from commonly available HPCs. We use the proposed RED to enhance the temporal deep learning detection of anomalous behavior, by estimating distribution deviations from the normal behavior with an effective statistical test. Experimental results on a real power-grid controller show that we can detectmore »anomalous behavior with high accuracy (>99.9%), nearly zero false positives and short (<360ms) latency.« less
  5. Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction lossmore »while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.« less