skip to main content

Title: Enabling coherent BaZrO 3 nanorods/YBa 2 Cu 3 O 7−x interface through dynamic lattice enlargement in vertical epitaxy of BaZrO 3 /YBa 2 Cu 3 O 7−x nanocomposites
Abstract One-dimensional c -axis-aligned BaZrO 3 (BZO) nanorods are regarded as strong one-dimensional artificial pinning centers (1D-APCs) in BZO-doped YaBa 2 Cu 3 O 7− x (BZO/YBCO) nanocomposite films. However, a microstructure analysis has revealed a defective, oxygen-deficient YBCO column around the BZO 1D-APCs due to the large lattice mismatch of ∼7.7% between the BZO (3a = 1.26 nm) and YBCO (c = 1.17 nm), which has been blamed for the reduced pinning efficiency of BZO 1D-APCs. Herein, we report a dynamic lattice enlargement approach on the tensile strained YBCO lattice during the BZO 1D-APCs growth to induce c -axis elongation of the YBCO lattice up to 1.26 nm near the BZO 1D-APC/YBCO interface via Ca/Cu substitution on single Cu-O planes of YBCO, which prevents the interfacial defect formation by reducing the BZO/YBCO lattice mismatch to ∼1.4%. Specifically, this is achieved by inserting thin Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7− x (CaY-123) spacers as the Ca reservoir in 2–6 vol.% BZO/YBCO nanocomposite multilayer (ML) films. A defect-free, coherent BZO 1D-APC/YBCO interface is confirmed in transmission electron microscopy and elemental distribution analyses. Excitingly, up to five-fold enhancement of J c ( B ) at magnetic field B more » = 9.0 T// c -axis and 65 K–77 K was obtained in the ML samples as compared to their BZO/YBCO single-layer (SL) counterpart’s. This has led to a record high pinning force density F p together with significantly enhanced B max at which F p reaches its maximum value F p,max for BZO 1D-APCs at B // c -axis. At 65 K, the F p,max ∼158 GN m −3 and B max ∼ 8.0 T for the 6% BZO/YBCO ML samples represent a significant enhancement over F p,max ∼ 36.1 GN m −3 and B max ∼ 5.0 T for the 6% BZO/YBCO SL counterparts. This result not only illustrates the critical importance of a coherent BZO 1D-APC/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO 1D-APCs. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1909292 1809293
Publication Date:
NSF-PAR ID:
10319020
Journal Name:
Superconductor Science and Technology
Volume:
35
Issue:
3
ISSN:
0953-2048
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microstructural analysis of the BaZrO 3 (BZO)/YBa 2 Cu 3 O 7 (YBCO) interface has revealed a highly defective and oxygen deficient 2-3 nm thick YBCO column surrounding the BZO one-dimensional artificial pinning centers (1D-APCs). The resulting semi-coherent interface is the consequence of the ∼7.7% BZO/YBCO lattice mismatch and is responsible for the low pinning efficiency of BZO 1D-APCs. Herein, we report an interface engineering approach of dynamic Ca/Cu replacement on YBCO lattice to reduce/eliminate the BZO/YBCO lattice mismatch for improved pinning at a wide angular range of the magnetic field orientation. The Ca/Cu replacement induces a local elongation of the YBCO c-lattice near the BZO/YBCO interface, thereby ensuring a reduction in the BZO/YBCO lattice mismatch to ∼1.4% and a coherent BZO/YBCO interface. This has resulted in enhanced pinning at B//c-axis and a broad angular range of B-field orientation. For example, the 6 vol.% BZO/YBCO film with interface engineering exhibits F p ∼158 GN/m 3 at 65 K and B//c-axis, which is 440% higher than the ∼36.1 GN/m 3 for the reference 6% BZO/YBCO sample, and enhanced J c and F p in a wide angular range up to ∼ 80°. This result illustrates a facile scheme for engineeringmore »1D-APC/YBCO interface to resume the pristine pinning efficiency of the 1D-APCs.« less
  2. Abstract The BaZrO 3 /YBa 2 Cu 3 O 7 (BZO/YBCO) interface has been found to affect the vortex pinning efficiency of one-dimensional artificial pinning centers (1D-APC) of BZO. A defective BZO/YBCO interface due to a lattice mismatch of ∼7.7% has been blamed for the reduced pinning efficiency. Recently, we have shown incorporating Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7-x spacer layers in BZO/YBCO nanocomposite film in multilayer (ML) format can lead to a reduced lattice mismatch ∼1.4% through the enlargement of lattice constant of YBCO via Ca diffusion and partial Ca/Cu replacement on Cu-O planes. In this work, the effect of this interface engineering on the BZO 1D-APC pinning efficiency is investigated at temperatures of 65-81 K through a comparison between 2 and 6 vol.% BZO/YBCO ML samples with their single-layer (SL) counterparts. An overall higher pinning force ( F p ) density has been observed on the ML samples as compared to their SL counterparts. Specifically, the peak value of F p ( F p,max ) for the 6% BZO/YBCO ML film is about ∼ 4 times of that of its SL counterpart at 65 K. In addition, the location of the F p,max (more »B max ) in the ML samples shifts to higher values as a consequence of enhanced pinning. For the 6% BZO/YBCO ML sample, a much smaller “plateau-like” decrease of the B max with increasing temperature was observed, which is in contrast to approximately linear decrease of B max with increasing temperature in the 6% SL film. This result indicates the importance of restoring the BZO/YBCO interface quality for better pinning efficiency of BZO 1D-APCs especially at higher BZO doping concentration.« less
  3. Abstract This work examines the pinning enhancement in BaZrO 3 (BZO) +Y 2 O 3 doubly-doped (DD) YBa 2 Cu 3 O 7 (YBCO) nanocomposite multilayer (DD-ML) films. The film consists of two 10 nm thin Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7-x (CaY-123) spacers stacking alternatively with three BZO + Y 2 O 3 /YBCO layers of 50 nm each in thickness that contain 3 vol% of Y 2 O 3 and BZO doping in the range of 2–6 vol%. Enhanced magnetic vortex pinning and improved pinning isotropy with respect to the orientation of magnetic field (B) have been achieved in the DD-ML samples at lower BZO doping as compared to that in the single-layer counterparts (DD-SL) without the CaY-123 spacers. For example, the pinning force density ( F p ) of ∼58 GNm −3 in 2 vol.% of DD-ML film is ∼110% higher than in 2 vol% of DD-SL at 65 K and B // c -axis, which is attributed to the improved pinning efficiency by c -axis aligned BZO nanorods through diffusion of Calcium (Ca) along the tensile-strained channels at BZO nanorods/YBCO interface for improvement of the interface microstructure and hence pinning efficiency ofmore »BZO nanorods. An additional benefit is in the considerably improved J c ( θ ) and reduced J c anisotropy in the former over the entire range of the B orientations. However, at higher BZO doping, the BZO nanorods become segmented and misoriented, which may change the Ca diffusion pathways and reduce the benefit of Ca in improving the pinning efficiency of BZO nanorods.« less
  4. Abstract Two different types of monoclinic HfO 2 nanocrystals were employed in this work to study the effect of nanocrystal shape and crystallinity on the structural defects in the YBa2Cu3O7−δ (YBCO) matrix as it leads to an enhancement of pinning performances of solution-derived YBCO nanocomposite films. In this work the nanorod-like HfO 2 nanocrystals obtained from surfactant-controlled synthesis led to short intergrowths surrounding the particles, while spherical HfO 2 nanocrystals from the solvent-controlled synthesis led to the formation of long stacking faults in the YBCO matrix. It means that the small difference in crystallinity, lattice parameters, nanocrystal structures, core diameter of preformed nanocrystals in colloidal solutions have a strong influence on the formation of the structural defects around the particles in the YBCO matrix, leading to different pinning performances.
  5. BAlN films were grown by flow-rate modulation epitaxy on AlN. Figure 1 shows x-ray diffraction (XRD) peaks of 3-µm AlN/(0001) sapphire template layer and 45-nm BAlN layer at 2θ angles of 36.146o and 36.481o, corresponding to c-lattice constants of 4.966 and 4.922Å, respectively. The BAlN XRD peak is very clear and distinct given the small thickness, indicating good wurtzite crystallinity. It is not possible to directly calculate the B content from XRD alone because of uncertainty of the lattice parameters and strain. However, based on the angular separation of the XRD peaks and c-lattice constant difference, the B content is estimated to be ~7% [ ], which is considerably higher than those of high-quality wurtzite BAlN layers reported before [ , , ]. To obtain the accurate B content, Rutherford backscattering spectrometry (RBS) measurements are being made. Figures 2(a)-(b) show a high-resolution cross-sectional transmission electron microscopy (TEM) image with a magnification of 150 kx taken at a-zone axis ([11-20] projection) and diffraction pattern after fast-Fourier transform (FFT). A sharp interface between the AlN and BAlN layers is observed. In addition, the BAlN film exhibits a highly ordered lattice throughout the entire 45nm thickness without the polycrystalline columnar structures found inmore »previous reports [1, ]. The FFT image confirms a wurtzite structure oriented along c-axis. Figure 3 shows a 5×5 µm2 atomic force microscopy (AFM) image of BAlN layer surface. The root-mean-square (RMS) surface roughness is ~1.7nm. Surface macro-steps were found on the surface due to longer diffusion length of group-III atoms than the expected step terrace width. This indicates there is potential to lower the growth temperature to create smoother surfaces while maintaining crystallinity which has been observed for AlN [ ]. In summary, a high-quality wurtzite BAlN layer with relatively high B content ~7% was demonstrated by MOCVD. Refractive index will be measured to facilitate design of distributed Bragg reflector (DBR) for deep UV vertical-cavity surface-emitting laser (VCSEL).« less