Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract C-axis aligned BaZrO3(BZO) nanorods formed via strain-mediated self-assembly in BZO-doped YaBa2Cu3O7-x(BZO/YBCO) nanocomposite films can provide strong pinning to the quantized magnetic vortices. While the strain initiated from the BZO/YBCO lattice mismatch plays a critical role in nucleation and evolution of the BZO nanorods, it also leads to a highly defective BZO/YBCO interface and hence reduced pinning efficiency of BZO nanorods. This work reports a recent study in probing the effect of BZO/YBCO interface on the pinning efficiency of the BZO nanorods as the interface is repaired dynamically during the BZO nanorod growth using Ca doping. Within the BZO doping range of 2-8 vol.%, significantly enhanced pinning efficiency of the BZO nanorods have been observed. A peak enhancement up to five-fold of critical current density at 9.0 T and 65-77 K has been obtained in the 6 vol.% BZO/YBCO nanocomposites after the interface repair. This result not only illustrates the critical importance of the BZO/YBCO interface in the pinning efficiency, but also provides a facile scheme to achieve such an interface to restore the pristine pinning efficiency of the BZO nanorods.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Abstract Photodetectors based on colloidal quantum dots (QD)/graphene nanohybrids are quantum sensors due to strong quantum confinement in both QD and graphene. The optoelectronic properties of QD/graphene nanohybrids are affected by the quantum physics that predicts a high photoconductive gain and hence photoresponsivity (R*) depending on the pixel length (L) asR*∝L−2. Experimental confirmation of the effect of the pixel geometric parameters on the optoelectronic properties of the QD/graphene photodetector is therefore important to elucidate the underlying quantum physics. Motivated by this, an array of PbS QDs/graphene nanohybrid photodetectors are designed with variable QD/graphene pixel lengthLand width (W) in the range of 10–150 µm for a study ofR*, noise, and specific detectivity (D*) in a broad spectrum of 400–1500 nm. Intriguingly,R*exhibits a monotonic decreasing trend of 1/L2while being independent ofW, confirming experimentally the theoretical prediction. Interestingly, this geometric effect on the photoresponsivity seems to be partially compensated by that in noise, leading toD*independent ofLandWat wavelengths in the ultraviolet‐visible‐near infrared range. This result sheds light on the quantum physics underlying the optoelectronic process in QD/graphene nanohybrids, which is important to the design of high‐quality QD/graphene photodetectors and imaging systems.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Abstract Ultrathin (sub-2 nm) Al2O3/MgO memristors were recently developed using anin vacuoatomic layer deposition (ALD) process that minimizes unintended defects and prevents undesirable leakage current. These memristors provide a unique platform that allows oxygen vacancies (VO) to be inserted into the memristor with atomic precision and study how this affects the formation and rupture of conductive filaments (CFs) during memristive switching. Herein, we present a systematic study on three sets of ultrathin Al2O3/MgO memristors with VO-doping via modular MgO atomic layer insertion into an otherwise pristine insulating Al2O3atomic layer stack (ALS) using anin vacuoALD. At a fixed memristor thickness of 17 Al2O3/MgO atomic layers (∼1.9 nm), the properties of the memristors were found to be affected by the number and stacking pattern of the MgO atomic layers in the Al2O3/MgO ALS. Importantly, the trend of reduced low-state resistance and the increasing appearance of multi-step switches with an increasing number of MgO atomic layers suggests a direct correlation between the dimension and dynamic evolution of the conducting filaments and the VOconcentration and distribution. Understanding such a correlation is critical to an atomic-scale control of the switching behavior of ultrathin memristors.more » « less
-
Abstract Continuous device downsizing and circuit complexity have motivated atomic-scale tuning of memristors. Herein, we report atomically tunable Pd/M1/M2/Al ultrathin (<2.5 nm M1/M2 bilayer oxide thickness) memristors using in vacuo atomic layer deposition by controlled insertion of MgO atomic layers into pristine Al2O3atomic layer stacks guided by theory predicted Fermi energy lowering leading to a higher high state resistance (HRS) and a reduction of oxygen vacancy formation energy. Excitingly, memristors with HRS and on/off ratio increasing exponentially with M1/M2 thickness in the range 1.2–2.4 nm have been obtained, illustrating tunneling mechanism and tunable on/off ratio in the range of 10–104. Further dynamic tunability of on/off ratio by electric field is possible by designing of the atomic M2 layer and M1/M2 interface. This result probes ways in the design of memristors with atomically tunable performance parameters.more » « less
-
Abstract Instability of colloidal iodine‐based inorganic perovskite CsPbX3(X = Cl, Br, I) nanocrystals (IPNCs) represents a major obstacle in lead‐halide IPNC research and application. Herein, a ligand‐anchoring process is reported that enables significantly improved colloidal stability of the iodine‐based IPNCs for over 10 months in ambient. Apart from the previous efforts in searching for strong binding ligands to cap the IPNCs to incrementally reduce the exposure of the IPNC surface to the harsh colloidal environment, the ligand‐anchoring method demonstrates that such an exposure can be reduced substantially by suppressing the dynamic ligand exchange around the colloidal IPNCs. In the IPNC synthesis solution with common oleic acid (OA) and oleylamine (OLA) ligands with relative weak binding to IPNCs, a systematic reduction of the ligand concentration using hexane by an order of magnitude has shown to be effective in achieving OA/OLA ligand‐anchored iodine‐based IPNCs with superior stability as confirmed in optical absorption, photoluminescence,1H solution nuclear magnetic resonance spectroscopy, and photoresponse. This result has revealed that the intermittent exposure of the IPNC surface during the dynamic ligand exchange is a primary mechanism underlying the colloidal IPNC instability, which can be resolved in the ligand‐anchoring process by suppressing such dynamic activities.more » « less
-
Abstract BaZrO3(BZO) one-dimensional artificial pinning centers (1D-APCs) aligned along thec-axis of the YBa2Cu3O7(YBCO) have been adopted to enhance the magnetic vortex pinning in BZO/YBCO nanocomposite films. However, the pinning force densityFpof the BZO 1D-APCs remains moderate at temperatures near 77 K. A hypothesis of the major limiting factor is the defective BZO 1D-APCs/YBCO interface as a direct consequence of the large interfacial strain originated from the BZO/YBCO lattice mismatch of ∼7.7%. Herein, we explore enlarging thec-axis of the YBCO dynamically to reduce the lattice mismatch and hence to prevent formation of the defective BZO 1D-APCs/YBCO interface. Specifically, thec-axis enlargement was achieved by partial replacement of Cu with Ca on the YBCO lattice using strain-directed Ca diffusion into YBCO from two Ca0.3Y0.7Ba2Cu3O7−x(CaY-123) spacers of only 10 nm in thickness inserted into the 2 vol% BZO 1D-APC/YBCO nanocomposite thin films of ∼150 nm in total thickness. The achieved elongatedc-axis is attributed to the formation of stacking faults induced by Ca-replacement of Cu on YBCO lattice. The reduced BZO/YBCO lattice mismatch allows formation of a coherent BZO 1D-APC/YBCO interface with negligible defects. This leads to an enhancedFpvalue up to 98 GN m−3at 65 K, which is 70% higher than that of the reference 2 vol% BZO 1D-APC/YBCO sample. Furthermore, the benefit of the enhanced pinning of the BZO 1D-APCs with a coherent interface with YBCO can be extended to a large angular range of the magnetic field orientation. This study reveals the significant effect of the BZO/YBCO interface on the pinning efficiency of BZO 1D-APCs and provides a promising approach to achieve a coherent interface in BZO/YBCO nanocomposite films.more » « less
-
Abstract Localized surface plasmon resonance (LSPR) is shown to be effective in trapping light for enhanced light absorption and hence performance in photonic and optoelectronic devices. Implementation of LSPR in all‐inorganic perovskite nanocrystals (PNCs) is particularly important considering their unique advantages in optoelectronics. Motivated by this, the first success in colloidal synthesis of AuCu/CsPbCl3core/shell PNCs and observation of enhanced light absorption by the perovskite CsPbCl3shell of thickness in the range of 2–4 nm, enabled by the LSPR AuCu core of an average diameter of 7.1 nm, is reported. This enhanced light absorption leads to a remarkably enhanced photoresponse in PNCs/graphene nanohybrid photodetectors using the AuCu/CsPbCl3core/shell PNCs, by more than 30 times as compared to the counterparts with CsPbCl3PNCs only (8–12 nm in dimension). This result illustrates the feasibility in implementation of LSPR light trapping directly in core/shell PNCs for high‐performance optoelectronics.more » « less
-
Abstract Cation–π interactions between molecules and graphene are known to have a profound effect on the properties of the molecule/graphene nanohybrids and motivate this study to quantify the attachment of the rhodamine 6G (R6G) dye molecules on graphene and the photocarrier transfer channel formed across the R6G/graphene interface. By increasing the R6G areal density of the R6G on graphene field‐effect transistor (GFET) from 0 up to ≈3.6 × 1013cm−2, a linear shift of the Dirac point of the graphene from originally 1.2 V (p‐doped) to −1 V (n‐doped) is revealed with increasing number of R6G molecules. This indicates that the attachment of the R6G molecules on graphene is determined by the cation–π interaction between the NH+ in R6G and π electrons in graphene. Furthermore, a linear dependence of the photoresponse on the R6G molecule concentration to 550 nm illumination is observed on the R6G/graphene nanohybrid, suggesting that the cation–π interaction controls the R6G attachment configuration to graphene to allow formation of identical photocarrier transfer channels. On R6G/graphene nanohybrid with 7.2 × 107R6G molecules, high responsivity up to 5.15 × 102A W−1is obtained, suggesting molecule/graphene nanohybrids are promising for high‐performance optoelectronics.more » « less
-
Abstract Van der Waals (vdW) heterostructures of 2D atomically thin layered materials (2DLMs) provide a unique platform for constructing optoelectronic devices by staking 2D atomic sheets with unprecedented functionality and performance. A particular advantage of these vdW heterostructures is the energy band engineering of 2DLMs to achieve interlayer excitons through type‐II band alignment, enabling spectral range exceeding the cutoff wavelengths of the individual atomic sheets in the 2DLM. Herein, the high performance of GaTe/InSe vdW heterostructures device is reported. Unexpectedly, this GaTe/InSe vdWs p–n junction exhibits extraordinary detectivity in a new shortwave infrared (SWIR) spectrum, which is forbidden by the respective bandgap limits for the constituent GaTe (bandgap of ≈1.70 eV in both the bulk and monolayer) and InSe (bandgap of ≈1.20–1.80 eV depending on thickness reduction from bulk to monolayer). Specifically, the uncooled SWIR detectivity is up to ≈1014Jones at 1064 nm and ≈1012Jones at 1550 nm, respectively. This result indicates that the 2DLM vdW heterostructures with type‐II band alignment produce an interlayer exciton transition, and this advantage can offer a viable strategy for devising high‐performance optoelectronics in SWIR or even longer wavelengths beyond the individual limitations of the bandgaps and heteroepitaxy of the constituent atomic layers.more » « less
-
Abstract Lateral p–n junctions take the unique advantages of 2D materials, such as graphene, to enable single‐atomic layer microelectronics. A major challenge in fabrication of the lateral p–n junctions is in the control of electronic properties on a 2D atomic sheet with nanometer precision. Herein, a facile approach that employs decoration of molecular anions of bis‐(trifluoromethylsulfonyl)‐imide (TFSI) to generate p‐doping on the otherwise n‐doped graphene by positively polarized surface electric dipoles (pointing toward the surface) formed on the surface oxygen‐deficient layer “intrinsic” to an oxide ferroelectric back gate is reported. The characteristic double conductance minimaVDirac−andVDirac+illustrated in the obtained lateral graphene p–n junctions can be tuned in the range of −1 to 0 V and 0 to +1 V, respectively, by controlling the TFSI anions and surface dipoles quantitatively. The unique advantage of this approach is in adoption of polarity‐controlled molecular ion attachment on graphene, which could be further developed for various lateral electronics on 2D materials.more » « less