Title: Bilinear Systems With Initial Gaps Involving Inelastic Collision: Forced Response Experiments and Simulations
Abstract In this paper, the forced response of a two degrees-of-freedom (DOF) bilinear oscillator with initial gaps involving inelastic collision is discussed. In particular, a focus is placed upon the experimental verification of the generalized bilinear amplitude approximation (BAA) method, which can be used for the accurate estimation of forced responses for bilinear systems with initial gaps. Both experimental and numerical investigations on the system have been carried out. An experimental setup that is capable of representing the dynamics of a 2DOF oscillator has been developed, and forced response tests have been conducted under swept-sine base excitation for different initial gap sizes. The steady-state response of the system under base excitation was computed by both traditional time integration and BAA. It is shown that the results of experiments and numerical predictions are in good agreement especially at resonance. However, slight differences in the responses obtained from both numerical methods are observed. It was found that the time duration where the DOFs are in contact with each other predicted by BAA is longer than that predicted by time integration. Spectral analyses have also been conducted on both experimental and numerical results. It was observed that in a frequency range where intermittent contact between the masses occurs, super-harmonic components of the excitation frequency are present in the spectra. Moreover, as the initial gap size increases, the frequency band where the super-harmonic components are observed decreases. more »« less
Saito, Akira; Umemoto, Junta; Noguchi, Kohei; Tien, Meng-Hsuan; D’Souza, Kiran
(, ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference)
null
(Ed.)
Abstract In this paper, an experimental forced response analysis for a two degree of freedom piecewise-linear oscillator is discussed. First, a mathematical model of the piecewise linear oscillator is presented. Second, the experimental setup developed for the forced response study is presented. The experimental setup is capable of investigating a two degree of freedom piecewise linear oscillator model. The piecewise linearity is achieved by attaching mechanical stops between two masses that move along common shafts. Forced response tests have been conducted, and the results are presented. Discussion of characteristics of the oscillators are provided based on frequency response, spectrogram, time histories, phase portraits, and Poincaré sections. Period doubling bifurcation has been observed when the excitation frequency changes from a frequency with multiple contacts between the masses to a frequency with single contact between the masses occurs.
Considering the elasticity of gear solid bodies, the load applied to gear teeth will force theoretically separated gear teeth to get into engaging state in advance. This phenomenon is named as the extended tooth contact (ETC). Effects of the ETC directly influence the time-varying mesh stiffness of gear pairs and subsequently alter nonlinear dynamic characteristics of gear transmission systems. Time-vary mesh stiffness, considering effects of the ETC, is thus introduced into the dynamic model of the gear transmission system. Periodic motions of a gear transmission system are discussed in detail in this work. The analytical model of time-varying mesh stiffness with effects of the ETC is proposed, and the effectiveness of the analytical model is demonstrated in comparison with finite element (FE) results. The gear transmission system is simplified as a single degree-of-freedom (DOF) model system by employing the lumped mass method. The correctness of the dynamic model is verified in comparison with experimental results. An incremental harmonic balance (IHB) method is modified to obtain periodic responses of the gear transmission system. The improved Floquet theory is employed to determine the stability and bifurcation of the periodic responses of the gear transmission system. Some interesting phenomena exist in the periodic responses consisting of “softening-spring” behaviors, jump phenomena, primary resonances (PRs), and super-harmonic resonances (SP-HRs), and saddle-node bifurcations are observed. Especially, effects of loads on unstable regions, amplitudes, and positions of bifurcation points of frequency response curves are revealed. Analytical results obtained by the IHB method match very well with those from numerical integration.
In the present effort, a data-driven modeling approach is undertaken to forecast aperiodic responses of non-autonomous systems. As a representative non-autonomous system, a harmonically forced Duffing oscillator is considered. Along with it, an experimental prototype of a Duffing oscillator is studied. Data corresponding to chaotic motions are obtained through simulations of forced oscillators with hardening and softening characteristics and experiments with a bistable oscillator. Portions of these datasets are used to train a neural machine and make response predictions and forecasts for motions on the corresponding attractors. The neural machine is constructed by using a deep recurrent neural network architecture. The experiments conducted with the different numerical and experimental chaotic time-series data confirm the effectiveness of the constructed neural network for the forecasting of non-autonomous system responses.
The chief objective of this paper is to explore energy transfer mechanism between the sub-systems that are coupled by a nonlinear elastic path. In the proposed model (via a minimal order, two degree of freedom system), both sub-systems are defined as damped harmonic oscillators with linear springs and dampers. The first sub-system is attached to the ground on one side but connected to the second sub-system on the other side. In addition, linear elastic and dissipative characteristics of both oscillators are assumed to be identical, and a harmonic force excitation is applied only on the mass element of second oscillator. The nonlinear spring (placed in between the two sub-systems) is assumed to exhibit cubic, hardening type nonlinearity. First, the governing equations of the two degree of freedom system with a nonlinear elastic path are obtained. Second, the nonlinear differential equations are solved with a semi-analytical (multi-term harmonic balance) method, and nonlinear frequency responses of the system are calculated for different path coupling cases. As such, the nonlinear path stiffness is gradually increased so that the stiffness ratio of nonlinear element to the linear element is 0.01, 0.05, 0.1, 0.5 and 1.0 while the absolute value of linear spring stiffness is kept intact. In all solutions, it is observed that the frequency response curves at the vicinity of resonant frequencies bend towards higher frequencies as expected due to the hardening effect. However, at moderate or higher levels of path coupling (say 0.1, 0.5 and 1.0), additional branches emerge in the frequency response curves but only at the first resonant frequency. This is due to higher displacement amplitudes at the first resonant frequency as compared to the second one. Even though the oscillators move in-phase around the first natural frequency, high amplitudes increase the contribution of the stored potential energy in the nonlinear spring to the total mechanical energy. The out-of-phase motion around the second natural frequency cannot significantly contribute due to very low motion amplitudes. Finally, the governing equations are numerically solved for the same levels of nonlinearity, and the motion responses of both sub-systems are calculated. Both in-phase and out-of-phase motion responses are successfully shown in numerical solutions, and phase portraits of the system are generated in order to illustrate its nonlinear dynamics. In conclusion, a better understanding of the effect of nonlinear elastic path on two damped harmonic oscillators is gained.
Purpose This paper aims to present an approach for calibrating the numerical models of dynamical systems that have spatially localized nonlinear components. The approach implements the extended constitutive relation error (ECRE) method using multi-harmonic coefficients and is conceived to separate the errors in the representation of the global, linear and local, nonlinear components of the dynamical system through a two-step process. Design/methodology/approach The first step focuses on the system’s predominantly linear dynamic response under a low magnitude periodic excitation. In this step, the discrepancy between measured and predicted multi-harmonic coefficients is calculated in terms of residual energy. This residual energy is in turn used to spatially locate errors in the model, through which one can identify the erroneous model inputs which govern the linear behavior that need to be calibrated. The second step involves measuring the system’s nonlinear dynamic response under a high magnitude periodic excitation. In this step, the response measurements under both low and high magnitude excitation are used to iteratively calibrate the identified linear and nonlinear input parameters. Findings When model error is present in both linear and nonlinear components, the proposed iterative combined multi-harmonic balance method (MHB)-ECRE calibration approach has shown superiority to the conventional MHB-ECRE method, while providing more reliable calibration results of the nonlinear parameter with less dependency on a priori knowledge of the associated linear system. Originality/value This two-step process is advantageous as it reduces the confounding effects of the uncertain model parameters associated with the linear and locally nonlinear components of the system.
Noguchi, Kohei, Saito, Akira, Tien, Meng-Hsuan, and D’Souza, Kiran. Bilinear Systems With Initial Gaps Involving Inelastic Collision: Forced Response Experiments and Simulations. Retrieved from https://par.nsf.gov/biblio/10319034. Journal of Vibration and Acoustics 144.2 Web. doi:10.1115/1.4051493.
Noguchi, Kohei, Saito, Akira, Tien, Meng-Hsuan, and D’Souza, Kiran.
"Bilinear Systems With Initial Gaps Involving Inelastic Collision: Forced Response Experiments and Simulations". Journal of Vibration and Acoustics 144 (2). Country unknown/Code not available. https://doi.org/10.1115/1.4051493.https://par.nsf.gov/biblio/10319034.
@article{osti_10319034,
place = {Country unknown/Code not available},
title = {Bilinear Systems With Initial Gaps Involving Inelastic Collision: Forced Response Experiments and Simulations},
url = {https://par.nsf.gov/biblio/10319034},
DOI = {10.1115/1.4051493},
abstractNote = {Abstract In this paper, the forced response of a two degrees-of-freedom (DOF) bilinear oscillator with initial gaps involving inelastic collision is discussed. In particular, a focus is placed upon the experimental verification of the generalized bilinear amplitude approximation (BAA) method, which can be used for the accurate estimation of forced responses for bilinear systems with initial gaps. Both experimental and numerical investigations on the system have been carried out. An experimental setup that is capable of representing the dynamics of a 2DOF oscillator has been developed, and forced response tests have been conducted under swept-sine base excitation for different initial gap sizes. The steady-state response of the system under base excitation was computed by both traditional time integration and BAA. It is shown that the results of experiments and numerical predictions are in good agreement especially at resonance. However, slight differences in the responses obtained from both numerical methods are observed. It was found that the time duration where the DOFs are in contact with each other predicted by BAA is longer than that predicted by time integration. Spectral analyses have also been conducted on both experimental and numerical results. It was observed that in a frequency range where intermittent contact between the masses occurs, super-harmonic components of the excitation frequency are present in the spectra. Moreover, as the initial gap size increases, the frequency band where the super-harmonic components are observed decreases.},
journal = {Journal of Vibration and Acoustics},
volume = {144},
number = {2},
author = {Noguchi, Kohei and Saito, Akira and Tien, Meng-Hsuan and D’Souza, Kiran},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.