skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climatology of Lake-Effect Snow Days Along the Southern Shore of Lake Michigan: What Is the Sensitivity to Environmental Factors and Snowband Morphology?
The Laurentian Great Lakes have substantial influences on regional climatology, particularly with impactful lake-effect snow events. This study examines the snowfall, cloud-inferred snow band morphology, and environment of lake-effect snow days along the southern shore of Lake Michigan for the 1997–2017 period. Suitable days for study were identified based on the presence of lake-effect clouds assessed in a previous study and extended through 2017, combined with an independent classification of likely lake-effect snow days based on independent snowfall data and weather map assessments. The primary goals are to identify lake-effect snow days and evaluate the snowfall distribution and modes of variability, the sensitivity to thermodynamic and flow characteristics within the upstream sounding at Green Bay, WI, and the influences of snowband morphology. Over 300 lake-effect days are identified during the study period, with peak mean snowfall within the lake belt extending from southwest Michigan to northern Indiana. Although multiple lake-effect morphological types are often observed on the same day, the most common snow band morphology is wind parallel bands. Relative to days with wind parallel bands, the shoreline band morphology is more common with a reduced lower-tropospheric zonal wind component within the upstream sounding at Green Bay, WI, as well as higher sea-level pressure and 500-hPa geopotential height anomalies to the north of the Great Lakes. Snowfall is sensitive to band morphology, with higher snowfall for shoreline band structures than for wind parallel bands, especially due south of Lake Michigan. Snowfall is also sensitive to thermodynamic and flow properties, with a greater sensitivity to temperature in southwest Michigan and to flow properties in northwest Indiana.  more » « less
Award ID(s):
2040594
PAR ID:
10319205
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Water
Volume:
4
ISSN:
2624-9375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the Great Lakes region, total cold-season snowfall consists of contributions from both lake-effect systems (LES) and non-LES snow events. To enhance understanding of the regional hydroclimatology, this research examined these separate contributions with a focus on the cold seasons (October–March) of 2009/2010, a time period with the number of LES days substantially less than the mean, and 2012/2013, a time period with the number of LES days notably greater than the mean, for the regions surrounding Lakes Erie, Michigan, and Ontario. In general, LES snowfall exhibited a maximum contribution in near-shoreline areas surrounding each lake while non-LES snowfall tended to provide a more widespread distribution throughout the entire study regions with maxima often located in regions of elevated terrain. The percent contribution for LES snowfall to the seasonal snowfall varied spatially near each lake with localized maxima and ranged in magnitudes from 10% to over 70%. Although total LES snowfall amounts tended to be greater during the cold season with the larger number of LES days, the percent of LES snowfall contributing to the total cold-season snowfall was not directly dependent on the number of LES days. The LES snowfall contributions to seasonal totals were found to be generally larger for Lakes Erie and Ontario during the cold season with a greater number of LES days; however, LES contributions were similar or smaller for areas in the vicinity of Lake Michigan during the cold season with a smaller number of LES days. 
    more » « less
  2. Abstract Lake-effect precipitation is convective precipitation produced by relatively cold air passing over large and relatively warm bodies of water. This phenomenon most often occurs in North America over the southern and eastern shores of the Great Lakes, where high annual snowfalls and high-impact snowstorms frequently occur under prevailing west and northwest flow. Locally higher snow or rainfall amounts also occur due to lake-enhanced synoptic precipitation when conditionally unstable or neutrally stratified air is present in the lower troposphere. While likely less common, lake-effect and lake-enhanced precipitation can also occur with easterly winds, impacting the western shores of the Great Lakes. This study describes a 15-year climatology of easterly lake-effect (ELEfP) and lake-enhanced (ELEnP) precipitation (conjointly Easterly Lake Collective Precipitation: ELCP) events that developed in east-to-east-northeasterly flow over western Lake Superior from 2003 to 2018. ELCP occurs infrequently but often enough to have a notable climatological impact over western Lake Superior with an average of 14.6 events per year. The morphology favors both single shore-parallel ELEfP bands due to the convex western shoreline of Lake Superior and mixed-type banding due to ELEnP events occurring in association with “overrunning” synoptic-scale precipitation. ELEfP often occurs in association with a surface anticyclone to the north of Lake Superior. ELEnP typically features a similar northerly-displaced anticyclone and a surface cyclone located over the U.S. Upper Midwest that favor easterly boundary-layer winds over western Lake Superior. 
    more » « less
  3. Abstract An investigation of lake effect (LE) and the associated synoptic environment is presented for days when all five lakes in the Great Lakes (GL) region had LE bands [five-lake days (5LDs)]. The study utilized an expanded database of observed LE clouds over the GL during 25 cold seasons (October–March) from 1997/98 to 2021/22. LE bands occurred on 2870 days (64% of all cold-season days). Nearly a third of all LE bands occurred during 5LDs, although 5LDs consisted of just 17.1% of LE days. A majority of 5LDs (56.5%) had lake-to-lake (L2L) bands, and these days comprised 43.5% of all L2L occurrences. 5LDs occurred with a mean of 26.1 (SD = 6.2) days per cold season until 2008/09 and then decreased to a mean of 13.8 (SD = 5.5) days during subsequent cold seasons. January and February had the largest number of consecutive LE days in the GL with a mean of 5.7 and 5.4 days, respectively. As the number of consecutive LE days increases, both the number of 5LDs and the occurrence of consecutive 5LD increase. This translates to an increased potential of heavy snowfall impacts in multiple, localized areas of the GL for extended time periods. The mean composite synoptic pattern of 5LDs exhibited characteristics consistent with lake-aggregate disturbances and showed similarity to synoptic patterns favorable for LE over one or two of the GL found by previous studies. The results demonstrate that several additional areas of the GL are often experiencing LE bands when a localized area has active LE bands occurring. 
    more » « less
  4. Abstract Lake-effect snowstorms are often observed to manifest as dominant bands, commonly produce heavy localized snowfall, and may extend large distances inland, resulting in hazards and high societal impact. Some studies of dominant bands have documented concomitant environmental baroclinity (i.e., baroclinity occurring at a scale larger than the width of the parent lake), but the interaction of this baroclinity with the inland structure of dominant bands has been largely unexplored. In this study, the thermodynamic environment and thermodynamic and kinematic structure of simulated dominant bands are examined using WRF reanalyses at 3-km horizontal resolution and an innovative technique for selecting the most representative member from the WRF ensemble. Three reanalysis periods are selected from the Ontario Winter Lake-effect Systems (OWLeS) field campaign, encompassing 185 simulation hours, including 155 h in which dominant bands are identified. Environmental baroclinity is commonly observed during dominant-band periods and occurs in both the north–south and east–west directions. Sources of this baroclinity are identified and discussed. In addition, case studies are conducted for simulation hours featuring weak and strong along-band environmental baroclinity, resulting in weak and strong inland extent, respectively. These contrasting cases offer insight into one mechanism by which along-band environmental baroclinity can influence the inland structure and intensity of dominant bands: in the case with strong environmental baroclinity, inland portions of this band formed under weak instability and therefore exhibit slow overturning, enabling advection far inland under strong winds, whereas the nearshore portion forms under strong instability, and the enhanced overturning eventually leads to the demise of the inland portion of the band. 
    more » « less
  5. The air quality at the Lake Michigan shoreline in southeastern Wisconsin is heavily influenced by the combination of Chicago area urban emissions and the meteorology over the lake. In June 2020, a multi-rotor DJI M600 Pro unmanned aerial system (UAS) equipped with a small ozone monitor (2B POM) and a meteorological sensor (iMET-XF) was flown on forecasted ozone exceedance days in the morning and evening to measure ozone, temperature, pressure and humidity profiles from 5-120 m AGL at the Chiwaukee Prairie State Natural Area in Southeastern Wisconsin. The Wisconsin DNR lakeshore air quality monitor at Chiwaukee Prairie in Kenosha, WI (AIRS ID 55-059-0019) sits 0.16 km from the shoreline and at the Wisconsin-Illinois boarder, near to where the UAS flights took place. The Chiwaukee Priaire monitoring station was equipped for an enhanced monitoring season, with a LIDAR Wind Profiler instrument. The combination of UAS measurements with the LIDAR meteorological measurements provide an understanding of the vertical structure in the meteorology of lake breeze and ozone during exceedance days. Temperature measurements aloft from the UAS show an atmospheric inversion at this site all sampling days (June 8, 9, 15-19). The ozone measurements trend with the temperature data, typically with higher ozone aloft than at the surface with a regular feature at 50-80 m AGL. We will discuss the results from the UAS with the LIDAR measurements to help understand the lake breeze influence on the local ozone measurements. 
    more » « less