skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Contribution of Lake-Effect Snow to Annual Snowfall Totals in the Vicinity of Lakes Erie, Michigan, and Ontario
In the Great Lakes region, total cold-season snowfall consists of contributions from both lake-effect systems (LES) and non-LES snow events. To enhance understanding of the regional hydroclimatology, this research examined these separate contributions with a focus on the cold seasons (October–March) of 2009/2010, a time period with the number of LES days substantially less than the mean, and 2012/2013, a time period with the number of LES days notably greater than the mean, for the regions surrounding Lakes Erie, Michigan, and Ontario. In general, LES snowfall exhibited a maximum contribution in near-shoreline areas surrounding each lake while non-LES snowfall tended to provide a more widespread distribution throughout the entire study regions with maxima often located in regions of elevated terrain. The percent contribution for LES snowfall to the seasonal snowfall varied spatially near each lake with localized maxima and ranged in magnitudes from 10% to over 70%. Although total LES snowfall amounts tended to be greater during the cold season with the larger number of LES days, the percent of LES snowfall contributing to the total cold-season snowfall was not directly dependent on the number of LES days. The LES snowfall contributions to seasonal totals were found to be generally larger for Lakes Erie and Ontario during the cold season with a greater number of LES days; however, LES contributions were similar or smaller for areas in the vicinity of Lake Michigan during the cold season with a smaller number of LES days.  more » « less
Award ID(s):
2040594
PAR ID:
10319206
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Water
Volume:
4
ISSN:
2624-9375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Laurentian Great Lakes have substantial influences on regional climatology, particularly with impactful lake-effect snow events. This study examines the snowfall, cloud-inferred snow band morphology, and environment of lake-effect snow days along the southern shore of Lake Michigan for the 1997–2017 period. Suitable days for study were identified based on the presence of lake-effect clouds assessed in a previous study and extended through 2017, combined with an independent classification of likely lake-effect snow days based on independent snowfall data and weather map assessments. The primary goals are to identify lake-effect snow days and evaluate the snowfall distribution and modes of variability, the sensitivity to thermodynamic and flow characteristics within the upstream sounding at Green Bay, WI, and the influences of snowband morphology. Over 300 lake-effect days are identified during the study period, with peak mean snowfall within the lake belt extending from southwest Michigan to northern Indiana. Although multiple lake-effect morphological types are often observed on the same day, the most common snow band morphology is wind parallel bands. Relative to days with wind parallel bands, the shoreline band morphology is more common with a reduced lower-tropospheric zonal wind component within the upstream sounding at Green Bay, WI, as well as higher sea-level pressure and 500-hPa geopotential height anomalies to the north of the Great Lakes. Snowfall is sensitive to band morphology, with higher snowfall for shoreline band structures than for wind parallel bands, especially due south of Lake Michigan. Snowfall is also sensitive to thermodynamic and flow properties, with a greater sensitivity to temperature in southwest Michigan and to flow properties in northwest Indiana. 
    more » « less
  2. Abstract An investigation of lake effect (LE) and the associated synoptic environment is presented for days when all five lakes in the Great Lakes (GL) region had LE bands [five-lake days (5LDs)]. The study utilized an expanded database of observed LE clouds over the GL during 25 cold seasons (October–March) from 1997/98 to 2021/22. LE bands occurred on 2870 days (64% of all cold-season days). Nearly a third of all LE bands occurred during 5LDs, although 5LDs consisted of just 17.1% of LE days. A majority of 5LDs (56.5%) had lake-to-lake (L2L) bands, and these days comprised 43.5% of all L2L occurrences. 5LDs occurred with a mean of 26.1 (SD = 6.2) days per cold season until 2008/09 and then decreased to a mean of 13.8 (SD = 5.5) days during subsequent cold seasons. January and February had the largest number of consecutive LE days in the GL with a mean of 5.7 and 5.4 days, respectively. As the number of consecutive LE days increases, both the number of 5LDs and the occurrence of consecutive 5LD increase. This translates to an increased potential of heavy snowfall impacts in multiple, localized areas of the GL for extended time periods. The mean composite synoptic pattern of 5LDs exhibited characteristics consistent with lake-aggregate disturbances and showed similarity to synoptic patterns favorable for LE over one or two of the GL found by previous studies. The results demonstrate that several additional areas of the GL are often experiencing LE bands when a localized area has active LE bands occurring. 
    more » « less
  3. This dataset contains a record of daily mean air temperature for each of the U.S. Great Lakes from January 1, 1897 to October 22, 2023. These temperatures were derived using the following method. Daily maximum and minimum air temperature data were obtained from the Global Historical Climatology Network-Daily (GHCNd, Menne, et al. 2012) and the Great Lakes Air Temperature/Degree Day Climatology, 1897-1983 (Assel et al. 1995). Daily air temperature was calculated by taking a simple average of daily maximum and minimum air temperature. Following Cohn et al. (2021), a total of 24 coastal locations along the Great Lakes were selected. These 24 locations had relatively consistent station data records since the 1890s. Each of the selected locations had multiple weather stations in their proximity covering the historical period from 1890s to 2023, representing the weather conditions around the location. For most of the locations, datasets from multiple stations in the proximity of each location were combined to create a continuous data record from the 1890s to 2023. When doing so, data consistency was verified by comparing the data during the period when station datasets overlap. This procedure resulted in almost continuous timeseries, except for a few locations that still had temporal gaps of one to several days. Any temporal data gap less than 10 days in the combined timeseries were filled based on the linear interpolation. This resulted in completely continuous timeseries for all the locations. Average daily air temperature was calculated from by simply making an average of timeseries data from corresponding locations around each lake. This resulted in daily air temperature records for all five Great Lakes (Lake Superior, Lake Huron, Lake Michigan, Lake Erie, and Lake Ontario). 
    more » « less
  4. Abstract Potential factors affecting the inland penetration and orographic modulation of lake-effect precipitation east of Lake Ontario include the environmental (lake, land, and atmospheric) conditions, mode of the lake-effect system, and orographic processes associated with flow across the downstream Tug Hill Plateau (herein Tug Hill), Black River valley, and Adirondack Mountains (herein Adirondacks). In this study we use data from the KTYX WSR-88D, ERA5 reanalysis, New York State Mesonet, and Ontario Winter Lake-effect Systems (OWLeS) field campaign to examine how these factors influence lake-effect characteristics with emphasis on the region downstream of Tug Hill. During an eight-cool-season (16 November–15 April) study period (2012/13–2019/20), total radar-estimated precipitation during lake-effect periods increased gradually from Lake Ontario to upper Tug Hill and decreased abruptly where the Tug Hill escarpment drops into the Black River valley. The axis of maximum precipitation shifted poleward across the northern Black River valley and into the northwestern Adirondacks. In the western Adirondacks, the heaviest lake-effect snowfall periods featured strong, near-zonal boundary layer flow, a deep boundary layer, and a single precipitation band aligned along the long-lake axis. Airborne profiling radar observations collected during OWLeS IOP10 revealed precipitation enhancement over Tug Hill, spillover and shadowing in the Black River valley where a resonant lee wave was present, and precipitation invigoration over the western Adirondacks. These results illustrate the orographic modulation of inland-penetrating lake-effect systems downstream of Lake Ontario and the factors favoring heavy snowfall over the western Adirondacks. Significance StatementInland penetrating lake-effect storms east of Lake Ontario affect remote rural communities, enable a regional winter-sports economy, and contribute to a snowpack that contributes to runoff and flooding during thaws and rain-on-snow events. In this study we illustrate how the region’s three major geographic features—Tug Hill, the Black River valley, and the western Adirondacks—affect the characteristics of lake-effect precipitation, describe the factors contributing to heavy snowfall over the western Adirondacks, and provide an examples of terrain effects in a lake-effect storm observed with a specially instrumented research aircraft. 
    more » « less
  5. To address how phytoplankton in the Great Lakes respond to macro- and micronutrients, we conducted a bottle incubation enrichment experiment using water collected from blooming (Maumee Bay and Fox River) and non-blooming sites (Detroit River and Ford River) in Lakes Erie and Michigan, respectively, during late summer. Surface water from these locations was collected and taken to Kent State University either via overnight shipping (Lake Michigan sites) or driven directly after collection (Lake Erie sites). Chlorophyll a (an index of overall biomass), community composition and toxicity were all measured as responses to treatments of labile inorganic nitrogen (N), phosphorus (P) and a mixture of micronutrients (chemical symbols: Fe, Mn, Mo, Ni, Zn). 
    more » « less