The electronic and optical responses of an organic semiconductor (OSC) are dictated by the chemistries of the molecular or polymer building blocks and how these chromophores pack in the solid state. Understanding the physicochemical nature of these responses is not only critical for determining the OSC performance for a particular application, but the UV/visible optical response may also be of potential use to determine aspects of the molecular-scale solid-state packing for crystal polymorphs or thin-film morphologies that are difficult to determine otherwise. To probe these relationships, we report the quantum-chemical investigation of a series of trialkyltetrelethynyl acenes (tetrel = silicon or germanium) that adopt the brickwork, slip-stack, or herringbone (HB) packing configurations; the π-conjugated backbones considered here are pentacene and anthradithiophene. For comparison, HB-packed (unsubstituted) pentacene is also included. Density functional theory and G 0 W 0 (single-shot Green’s function G and/or screened Coulomb function W) electronic band structures, G 0 W 0 -Bethe–Salpeter equation-derived optical spectra, polarized ϵ 2 spectra, and distributions of both singlet and triplet exciton wave functions are reported. Configurational disorder is also considered. Furthermore, we evaluate the probability of singlet fission in these materials through energy conservation relationships.
more »
« less
Crystal engineering of alkylethynyl fluoroanthradithiophenes
Fluoroanthradithiophenes are well known organic semiconductors, where alkynyl substituents featuring silicon and germanium exhibit hole mobilities in excess of 5 cm 2 V −1 s −1 . A key feature to achieve these performance levels is the 2-dimensional brickwork packing of triethylsilyl and triethylgermyl side chains, which direct solid-state packing, increase molecular stability, and increase solution processability for cheap and large scale fabrication. We have recently reported side chains utilising carbon in place of the other group 14 atoms, resulting in less favourable 1-dimensional molecular packing. Here we present the synthesis of new derivatives which adopt 2-D brickwork packing without the use of silicon or germanium to determine substituent effects on charge carrier mobility.
more »
« less
- Award ID(s):
- 1849213
- PAR ID:
- 10319213
- Date Published:
- Journal Name:
- Molecular Systems Design & Engineering
- ISSN:
- 2058-9689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A carbon side-chain analogue to the high-performance organic semiconductor triethylsilylethynyl difluoroanthradithiophene has been synthesised and characterized. Atomic substitution of carbon for silicon results in subtle changes to opto-electronic properties, which are rationalised by density functional theory and balance of electron donating and withdrawing effects. Larger differences are observed in photostability and solid-state packing of the new material in comparison to known silicon and germanium derivatives. Comparison of the group 14 elements teaches us about the newly synthesised system, but also how the silylethynyl substituents used for the last two decades contribute to successful employment of functionalised polycyclic aromatic hydrocarbons as organic semiconductors.more » « less
-
Abstract The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams.more » « less
-
Polypeptoids, a class of synthetic peptidomimetic polymers, have attracted increasing attention due to their potential for biotechnological applications, such as drug/gene delivery, sensing and molecular recognition. Recent investigations on the solution self-assembly of amphiphilic block copolypeptoids highlighted their capability to form a variety of nanostructures with tailorable morphologies and functionalities. Here, we review our recent findings on the solutions self-assembly of coil-crystalline diblock copolypeptoids bearing alkyl side chains. We highlight the solution self-assembly pathways of these polypeptoid block copolymers and show how molecular packing and crystallization of these building blocks affect the self-assembly behavior, resulting in one-dimensional (1D), two-dimensional (2D) and multidimensional hierarchical polymeric nanostructures in solution.more » « less
-
Abstract Topochemical polymerizations hold the promise of producing high molecular weight and stereoregular single crystalline polymers by first aligning monomers before polymerization. However, monomer modifications often alter the crystal packing and result in non‐reactive polymorphs. Here, we report a systematic study on the side chain functionalization of the bis(indandione) derivative system that can be polymerized under visible light. Precisely engineered side chains help organize the monomer crystals in a one‐dimensional fashion to maintain the topochemical reactivity. By optimizing the side chain length and end group of monomers, the elastic modulus of the resulting polymer single crystals can also be greatly enhanced. Lastly, using ultrasonication, insoluble polymer single crystals can be processed into free‐standing and robust polymer thin films. This work provides new insights on the molecular design of topochemical reactions and paves the way for future applications of this fascinating family of materials.more » « less
An official website of the United States government

