skip to main content


Title: Crystal engineering of alkylethynyl fluoroanthradithiophenes
Fluoroanthradithiophenes are well known organic semiconductors, where alkynyl substituents featuring silicon and germanium exhibit hole mobilities in excess of 5 cm 2 V −1 s −1 . A key feature to achieve these performance levels is the 2-dimensional brickwork packing of triethylsilyl and triethylgermyl side chains, which direct solid-state packing, increase molecular stability, and increase solution processability for cheap and large scale fabrication. We have recently reported side chains utilising carbon in place of the other group 14 atoms, resulting in less favourable 1-dimensional molecular packing. Here we present the synthesis of new derivatives which adopt 2-D brickwork packing without the use of silicon or germanium to determine substituent effects on charge carrier mobility.  more » « less
Award ID(s):
1849213
NSF-PAR ID:
10319213
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The electronic and optical responses of an organic semiconductor (OSC) are dictated by the chemistries of the molecular or polymer building blocks and how these chromophores pack in the solid state. Understanding the physicochemical nature of these responses is not only critical for determining the OSC performance for a particular application, but the UV/visible optical response may also be of potential use to determine aspects of the molecular-scale solid-state packing for crystal polymorphs or thin-film morphologies that are difficult to determine otherwise. To probe these relationships, we report the quantum-chemical investigation of a series of trialkyltetrelethynyl acenes (tetrel = silicon or germanium) that adopt the brickwork, slip-stack, or herringbone (HB) packing configurations; the π-conjugated backbones considered here are pentacene and anthradithiophene. For comparison, HB-packed (unsubstituted) pentacene is also included. Density functional theory and G 0 W 0 (single-shot Green’s function G and/or screened Coulomb function W) electronic band structures, G 0 W 0 -Bethe–Salpeter equation-derived optical spectra, polarized ϵ 2 spectra, and distributions of both singlet and triplet exciton wave functions are reported. Configurational disorder is also considered. Furthermore, we evaluate the probability of singlet fission in these materials through energy conservation relationships. 
    more » « less
  2. Abstract

    Organic photovoltaic power conversion efficiencies exceeding 14% can largely be attributed to the development of nonfullerene acceptors (NFAs). Many of these molecules are structural derivatives of IDTBR and ITIC, two common NFAs. By modifying the chemical structure of the acceptor, the optical absorption, energy levels, and bulk heterojunction morphology can be tuned. However, the effect of structural modifications on NFA charge transport properties has not yet been fully explored. In this work, the relationship between chemical structure, molecular packing, and charge transport, as measured in organic thin‐film transistors (OTFTs), is investigated for two high performance NFAs, namely O‐IDTBR and ITIC, along with their structural derivatives EH‐IDTBR and ITIC‐Th. O‐IDTBR exhibits a higher n‐type saturation field effect mobility of 0.12 cm2V−1s−1compared with the other acceptors investigated. This can be attributed to the linear side chains of O‐IDTBR which direct an interdigitated columnar packing motif. The study provides insight into the transport properties and molecular packing of NFAs, thereby contributing to understanding the relationship between chemical structure, material properties, and device performance for these materials. The high electron mobility achieved by O‐IDTBR also suggests its applications can be extended to use as an n‐type semiconductor in OTFTs.

     
    more » « less
  3. A carbon side-chain analogue to the high-performance organic semiconductor triethylsilylethynyl difluoroanthradithiophene has been synthesised and characterized. Atomic substitution of carbon for silicon results in subtle changes to opto-electronic properties, which are rationalised by density functional theory and balance of electron donating and withdrawing effects. Larger differences are observed in photostability and solid-state packing of the new material in comparison to known silicon and germanium derivatives. Comparison of the group 14 elements teaches us about the newly synthesised system, but also how the silylethynyl substituents used for the last two decades contribute to successful employment of functionalised polycyclic aromatic hydrocarbons as organic semiconductors. 
    more » « less
  4. Abstract

    The previously unknown silylgermylidyne radical (H3SiGe; X2A′′) was prepared via the bimolecular gas phase reaction of ground state silylidyne radicals (SiH; X2Π) with germane (GeH4; X1A1) under single collision conditions in crossed molecular beams experiments. This reaction begins with the formation of a van der Waals complex followed by insertion of silylidyne into a germanium‐hydrogen bond forming the germylsilyl radical (H3GeSiH2). A hydrogen migration isomerizes this intermediate to the silylgermyl radical (H2GeSiH3), which undergoes a hydrogen shift to an exotic, hydrogen‐bridged germylidynesilane intermediate (H3Si(μ‐H)GeH); this species emits molecular hydrogen forming the silylgermylidyne radical (H3SiGe). Our study offers a remarkable glance at the complex reaction dynamics and inherent isomerization processes of the silicon‐germanium system, which are quite distinct from those of the isovalent hydrocarbon system (ethyl radical; C2H5) eventually affording detailed insights into an exotic chemistry and intriguing chemical bonding of silicon‐germanium species at the microscopic level exploiting crossed molecular beams.

     
    more » « less
  5. Abstract

    We present the structure of an engineered protein–protein interface between two beta barrel proteins, which is mediated by interactions between threonine (Thr) residues. This Thr zipper structure suggests that the protein interface is stabilized by close‐packing of the Thr residues, with only one intermonomer hydrogen bond (H‐bond) between two of the Thr residues. This Thr‐rich interface provides a unique opportunity to study the behavior of Thr in the context of many other Thr residues. In previous work, we have shown that the side chain (χ1) dihedral angles of interface and core Thr residues can be predicted with high accuracy using a hard sphere plus stereochemical constraint (HS) model. Here, we demonstrate that in the Thr‐rich local environment of the Thr zipper structure, we are able to predict theχ1dihedral angles of most of the Thr residues. Some, however, are not well predicted by the HS model. We therefore employed explicitly solvated molecular dynamics (MD) simulations to further investigate the side chain conformations of these residues. The MD simulations illustrate the role that transient H‐bonding to water, in combination with steric constraints, plays in determining the behavior of these Thr side chains.

    Broader Audience Statement: Protein–protein interactions are critical to life and the search for ways to disrupt adverse protein–protein interactions involved in disease is an ongoing area of drug discovery. We must better understand protein–protein interfaces, both to be able to disrupt existing ones and to engineer new ones for a variety of biotechnological applications. We have discovered and characterized an artificial Thr‐rich protein–protein interface. This novel interface demonstrates a heretofore unknown property of Thr‐rich surfaces: mediating protein–protein interactions.

     
    more » « less