skip to main content


Title: Highly Selective Oxygen Reduction to Hydrogen Peroxide on a Carbon-Supported Single-Atom Pd Electrocatalyst
Selective electrochemical two-electron oxygen reduction is a promising route for renewable and on-site H2O2 generation as an alternative to the anthraquinone process. Herein, we report a high-performance nitrogen-coordinated single-atom Pd electrocatalyst, which is derived from Pd-doped zeolitic imidazolate frameworks (ZIFs) through one-step thermolysis. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with X-ray absorption spectroscopy verifies atomically dispersed Pd atoms on nitrogen-doped carbon (Pd-NC). The single-atom Pd-NC catalyst exhibits excellent electrocatalytic performance for two-electron oxygen reduction to H2O2, which shows ∼95% selectivity toward H2O2 and an unprecedented onset potential of ∼0.8 V versus revisable hydrogen electrode (RHE) in 0.1 M KOH. Density functional theory (DFT) calculations demonstrate that the Pd-N4 catalytic sites thermodynamically prefer *–O bond breaking to O–O bond breaking, corresponding to a high selectivity for H2O2 production. This work provides a deep insight into the understanding of the catalytic process and design of high-performance 2e– ORR catalysts.  more » « less
Award ID(s):
1900401 2029442 1900039
NSF-PAR ID:
10319293
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Catalysis
ISSN:
2155-5435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nickel and nitrogen co-doped carbon (Ni–N–C) has emerged as a promising catalyst for the CO 2 reduction reaction (CO 2 RR); however, the chemical nature of its active sites has remained elusive. Herein, we report the exploration of the reactivity and active sites of Ni–N–C for the CO 2 RR. Single atom Ni coordinated with N confined in a carbon matrix was prepared through thermal activation of chemically Ni-doped zeolitic imidazolate frameworks (ZIFs) and directly visualized by aberration-corrected scanning transmission electron microscopy. Electrochemical results show the enhanced intrinsic reactivity and selectivity of Ni–N sites for the reduction of CO 2 to CO, delivering a maximum CO faradaic efficiency of 96% at a low overpotential of 570 mV. Density functional theory (DFT) calculations predict that the edge-located Ni–N 2+2 sites with dangling bond-containing carbon atoms are the active sites facilitating the dissociation of the C–O bond of the *COOH intermediate, while bulk-hosted Ni–N 4 is kinetically inactive. Furthermore, the high capability of edge-located Ni–N 4 being able to thermodynamically suppress the competitive hydrogen evolution is also explained. The proposal of edge-hosed Ni–N 2+2 sites provides new insight into designing high-efficiency Ni–N–C for CO 2 reduction. 
    more » « less
  2. null (Ed.)
    Bi-atom catalysts (BACs) have attracted increasing attention in important electrocatalytic reactions such as the oxygen reduction reaction (ORR). Here, by means of density functional theory simulations coupled with machine-learning technology, we explored the structure–property correlation and catalytic activity origin of BACs, where metal dimers are coordinated by N-doped graphene (NC). We first sampled 26 homonuclear (M 2 /NC) BACs and constructed the activity volcano curve. Disappointingly, only one BAC, namely Co 2 /NC, exhibits promising ORR activity, leaving considerable room for enhancement in ORR performance. Then, we extended our study to 55 heteronuclear BACs (M 1 M 2 /NC) and found that 8 BACs possess competitive or superior ORR activity compared with the Pt(111) benchmark catalyst. Specifically, CoNi/NC shows the most optimal activity with a very high limiting potential of 0.88 V. The linear scaling relationships among the adsorption free energy of *OOH, *O and *OH species are significantly weakened on BACs as compared to a transition metal surface, indicating that it is difficult to precisely describe the catalytic activity with only one descriptor. Thus, we adopted machine-learning techniques to identify the activity origin for the ORR on BACs, which is mainly governed by simple geometric parameters. Our work not only identifies promising BACs yet unexplored in the experiment, but also provides useful guidelines for the development of novel and highly efficient ORR catalysts. 
    more » « less
  3. The catalytic reduction of dioxygen (O2) is important in biological energy conversion and alternative energy applications. In comparison to Fe- and Co-based systems, examples of catalytic O2 reduction by homogeneous Mn-based systems is relatively sparse. Motivated by this lack of knowledge, two Mn-based catalysts for the oxygen reduction reaction (ORR) containing a bipyridine-based non-porphyrinic ligand framework have been developed to evaluate how pendent proton donor relays alter activity and selectivity for the ORR, where Mn(p-tbudhbpy)Cl (1) was used as a control complex and Mn(nPrdhbpy)Cl (2) contains a pendent –OMe group in the secondary coordination sphere. Using an ammonium-based proton source, N,N′-diisopropylethylammonium hexafluorophosphate, we analyzed catalytic activity for the ORR: 1 was found to be 64% selective for H2O2 and 2 is quantitative for H2O2, with O2 binding to the reduced Mn(II) center being the rate-determining step. Upon addition of the conjugate base, N,N′-diisopropylethylamine, the observed catalytic selectivity of both 1 and 2 shifted to H2O as the primary product. Interestingly, while the shift in selectivity suggests a change in mechanism for both 1 and 2, the catalytic activity of 2 is substantially enhanced in the presence of base and the rate-determining step becomes the bimetallic cleavage of the O–O bond in a Mn-hydroperoxo species. These data suggest that the introduction of pendent relay moieties can improve selectivity for H2O2 at the expense of diminished reaction rates from strong hydrogen bonding interactions. Further, although catalytic rate enhancements are observed with a change in product selectivity when base is added to buffer proton activity, the pendent relays stabilize dimer intermediates, limiting the maximum rate. 
    more » « less
  4. Atomic dispersion of metal catalysts on a substrate accounts for the increased atomic efficiency of single-atom catalysts (SACs) in various catalytic schemes compared to the nanoparticle counterparts. However, lacking neighboring metal sites has been shown to deteriorate the catalytic performance of SACs in a few industrially important reactions, such as dehalogenation, CO oxidation, and hydrogenation. Metal ensemble catalysts (M n ), an extended concept to SACs, have emerged as a promising alternative to overcome such limitation. Inspired by the fact that the performance of fully isolated SACs can be enhanced by tailoring their coordination environment (CE), we here evaluate whether the CE of M n can also be manipulated in order to enhance their catalytic activity. We synthesized a set of Pd ensembles (Pd n ) on doped graphene supports (Pd n /X-graphene where X = O, S, B, and N). We found that introducing S and N onto oxidized graphene modifies the first shell of Pd n converting Pd–O to Pd–S and Pd–N, respectively. We further found that the B dopant significantly affected the electronic structure of Pd n by serving as an electron donor in the second shell. We examined the performance of Pd n /X-graphene toward selective reductive catalysis, such as bromate reduction, brominated organic hydrogenation, and aqueous-phase CO 2 reduction. We observed that Pd n /N-graphene exhibited superior performance by lowering the activation energy of the rate-limiting step, i.e., H 2 dissociation into atomic hydrogen. The results collectively suggest controlling the CE of SACs in an ensemble configuration is a viable strategy to optimize and enhance their catalytic performance. 
    more » « less
  5. Abstract

    The electrochemical CO2reduction reaction (CO2RR) is a promising approach to achieving sustainable electrical‐to‐chemical energy conversion and storage while decarbonizing the emission‐heavy industry. The carbon‐supported, nitrogen‐coordinated, and atomically dispersed metal sites are effective catalysts for CO generation due to their high activity, selectivity, and earth abundance. Here, we discuss progress, challenges, and opportunities for designing and engineering atomic metal catalysts from single to dual metal sites. Engineering single metal sites using a nitrogen‐doped carbon model was highlighted to exclusively study the effect of carbon particle sizes, metal contents, and M−N bond structures in the form of MN4moieties on catalytic activity and selectivity. The structure‐property correlation was analyzed by combining experimental results with theoretical calculations to uncover the CO2to CO conversion mechanisms. Furthermore, dual‐metal site catalysts, inheriting the merits of single‐metal sites, have emerged as a new frontier due to their potentially enhanced catalytic properties. Designing optimal dual metal site catalysts could offer additional sites to alter the surface adsorption to CO2and various intermediates, thus breaking the scaling relationship limitation and activity‐stability trade‐off. The CO2RR electrolysis in flow reactors was discussed to provide insights into the electrolyzer design with improved CO2utilization, reaction kinetics, and mass transport.

     
    more » « less