Abstract Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe2) across microns at room temperature via steady-state pump-probe measurement. Wrinkle architecture enabled optically-resolvable local strain (2.4%) and energy gradient (49 meV/μm) to WSe2. We observed strain gradient induced flux of high-energy excitons and emission of funneled, low-energy excitons at the 2.5 μm-away pump point with nearly 45% of relative emission intensity compared to that of excited excitons. Our results strongly support the strain-driven manipulation of exciton funneling in two-dimensional semiconductors at room temperature, opening up future opportunities of 2D straintronic exciton devices.
more »
« less
Long-range transport of 2D excitons with acoustic waves
Abstract Excitons are elementary optical excitation in semiconductors. The ability to manipulate and transport these quasiparticles would enable excitonic circuits and devices for quantum photonic technologies. Recently, interlayer excitons in 2D semiconductors have emerged as a promising candidate for engineering excitonic devices due to their long lifetime, large exciton binding energy, and gate tunability. However, the charge-neutral nature of the excitons leads to weak response to the in-plane electric field and thus inhibits transport beyond the diffusion length. Here, we demonstrate the directional transport of interlayer excitons in bilayer WSe 2 driven by the propagating potential traps induced by surface acoustic waves (SAW). We show that at 100 K, the SAW-driven excitonic transport is activated above a threshold acoustic power and reaches 20 μm, a distance at least ten times longer than the diffusion length and only limited by the device size. Temperature-dependent measurement reveals the transition from the diffusion-limited regime at low temperature to the acoustic field-driven regime at elevated temperature. Our work shows that acoustic waves are an effective, contact-free means to control exciton dynamics and transport, promising for realizing 2D materials-based excitonic devices such as exciton transistors, switches, and transducers up to room temperature.
more »
« less
- PAR ID:
- 10319319
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to their atomic thinness with reduced dielectric screening, two-dimensional materials can possess a stable excitonic population at room temperature. This is attractive for future excitonic devices, where excitons are used to carry energy or information. In excitonic devices, controlling transport of the charge-neutral excitons is a key element. Here we show that exciton transport in a MoSe 2 monolayer semiconductor can be effectively controlled by dielectric screening. A MoSe 2 monolayer was partially covered with a hexagonal boron nitride flake. Photoluminescence measurements showed that the exciton energy in the covered region is about 12 meV higher than that in the uncovered region. Spatiotemporally resolved differential reflection measurements performed at the junction between the two regions revealed that this energy offset is sufficient to drive excitons across the junction for about 50 ps over a distance of about 200 nm. These results illustrate the feasibility of using van der Waals dielectric engineering to control exciton transport and contribute to understanding the effects of the dielectric environment on the electronic and optical properties of two-dimensional semiconductors.more » « less
-
Strong interactions between excitons are a characteristic feature of two-dimensional (2D) semiconductors, determining important excitonic properties, such as exciton lifetime, coherence, and photon-emission efficiency. Rhenium disulfide (ReS2), a member of the 2D transition-metal dichalcogenide (TMD) family, has recently attracted great attention due to its unique excitons that exhibit excellent polarization selectivity and coherence features. However, an in-depth understanding of exciton-exciton interactions in ReS2 is still lacking. Here we used ultrafast pump-probe spectroscopy to study exciton-exciton interactions in monolayer (1L), bilayer (2L), and triple layer ReS2. We directly measure the rate of exciton-exciton annihilation, a representative Auger-type interaction between excitons. It decreases with increasing layer number, as observed in other 2D TMDs. However, while other TMDs exhibit a sharp weakening of exciton-exciton annihilation between 1L and 2L, such behavior was not observed in ReS2. We attribute this distinct feature in ReS2 to the relatively weak interlayer coupling, which prohibits a substantial change in the electronic structure when the thickness varies. This work not only highlights the unique excitonic properties of ReS2 but also provides novel insight into the thickness dependence of exciton-exciton interactions in 2D systems.more » « less
-
Strain engineering is a powerful tool in designing artificial platforms for high-temperature excitonic quantum devices. Combining strong light-matter interaction with robust and mobile exciton quasiparticles, two-dimensional transition metal dichalcogenides (2D TMDCs) hold great promise in this endeavor. However, realizing complex excitonic architectures based on strain-induced electronic potentials alone has proven to be exceptionally difficult so far. Here, we demonstrate deterministic strain engineering of both single-particle electronic bandstructure and excitonic many-particle interactions. We create quasi-1D transport channels to confine excitons and simultaneously enhance their mobility through locally suppressed exciton-phonon scattering. Using ultrafast, all-optical injection and time-resolved readout, we realize highly directional exciton flow with up to 100% anisotropy both at cryogenic and room temperatures. The demonstrated fundamental modification of the exciton transport properties in a deterministically strained 2D material with effectively tunable dimensionality has broad implications for both basic solid-state science and emerging technologies.more » « less
-
Both two-dimensional (2D) transitional metal dichalcogenides (TMDs) and III–V semiconductors have been considered as potential platforms for quantum technology. While 2D TMDs exhibit a large exciton binding energy, and their quantum properties can be tailored via heterostructure stacking, TMD technology is currently limited by the incompatibility with existing industrial processes. Conversely, III-nitrides have been widely used in light-emitting devices and power electronics but not leveraging excitonic quantum aspects. Recent demonstrations of 2D III-nitrides have introduced exciton binding energies rivaling TMDs, promising the possibility to achieve room-temperature quantum technologies also with III-nitrides. Here, we discuss recent advancements in the synthesis and characterizations of 2D III-nitrides with a focus on 2D free-standing structures and embedded ultrathin quantum wells. We overview the main obstacles in the material synthesis, vital solutions, and the exquisite optical properties of 2D III-nitrides that enable excitonic and quantum-light emitters.more » « less
An official website of the United States government

