skip to main content

Title: Developing Fused Deposition Modeling Additive Manufacturing Processing Strategies for Aluminum Alloy 7075: Sample Preparation and Metallographic Characterization
Currently, no commercial aluminum 7000 series filaments are available for making aluminum parts using fused deposition modeling (FDM)-based additive manufacturing (AM). The key technical challenge associated with the FDM of aluminum alloy parts is consolidating the loosely packed alloy powders in the brown-body, separated by thin layers of surface oxides and polymer binders, into a dense structure. Classical pressing and sintering-based powder metallurgy (P/M) technologies are employed in this study to assist the development of FDM processing strategies for making strong Al7075 AM parts. Relevant FDM processing strategies, including green-body/brown-body formation and the sintering processes, are examined. The microstructures of the P/M-prepared, FDM-like Al7075 specimens are analyzed and compared with commercially available FDM 17-4 steel specimens. We explored the polymer removal and sintering strategies to minimize the pores of FDM-Al7075-sintered parts. Furthermore, the mechanisms that govern the sintering process are discussed.
Authors:
; ; ; ;
Award ID(s):
1946231 2042683
Publication Date:
NSF-PAR ID:
10319393
Journal Name:
Materials
Volume:
15
Issue:
4
ISSN:
1996-1944
Sponsoring Org:
National Science Foundation
More Like this
  1. Binder jet 3D printing combined with post-deposition sintering is a non-beam additive manufacturing (AM) method for the creation of complex metallic structures. Binder saturation and particle morphology are two important factors affecting the quality of printed parts. Here, we investigated the effects of binder saturation on dimension accuracy, porosity, microstructure and microhardness of nickel-based alloy 625 samples made of differently atomized powders. Argon gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet samples for a detailed comparative study. The optimal binder saturation for WA system is 60% to 70%, whereas for GA system the optimal is about 80%. Generally, GA samples achieved better overall quality than WA samples in terms of packing density, dimensional accuracy, sintered density, and microhardness. This difference is attributed mainly to the particle morphology including sphericity and roundness. The critical threshold for visible binder bleeding phenomenon in WA and GA systems is determined to be 120% and 140% binder saturation, respectively. Mechanisms for binder bleeding phenomenon at different saturation levels for WA and GA systems are discussed in detail. A pore evolution model is proposed to better understand the printing and sintering processes.
  2. Abstract

    Forming metallurgical phases has a critical impact on the performance of dissimilar materials joints. Here, we shed light on the forming mechanism of equilibrium and non-equilibrium intermetallic compounds (IMCs) in dissimilar aluminum/steel joints with respect to processing history (e.g., the pressure and temperature profiles) and chemical composition, where the knowledge of free energy and atomic diffusion in the Al–Fe system was taken from first-principles phonon calculations and data available in the literature. We found that the metastable and ductile (judged by the presently predicted elastic constants) Al6Fe is a pressure (P) favored IMC observed in processes involving high pressures. The MoSi2-type Al2Fe is brittle and a strongP-favored IMC observed at high pressures. The stable, brittle η-Al5Fe2is the most observed IMC (followed by θ-Al13Fe4) in almost all processes, such as fusion/solid-state welding and additive manufacturing (AM), since η-Al5Fe2is temperature-favored, possessing high thermodynamic driving force of formation and the fastest atomic diffusivity among all Al–Fe IMCs. Notably, the ductile AlFe3, the less ductile AlFe, and most of the other IMCs can be formed during AM, making AM a superior process to achieve desired IMCs in dissimilar materials. In addition, the unknown configurations of Al2Fe and Al5Fe2were also examined by machine learningmore »based datamining together with first-principles verifications and structure predictions. All the IMCs that are notP-favored can be identified using the conventional equilibrium phase diagram and the Scheil-Gulliver non-equilibrium simulations.

    « less
  3. This study investigates the application of electroless nickel deposition on additively manufactured stainless steel samples. Current additive manufacturing (AM) technologies produce metal components with a rough surface. Rough surfaces generally exhibit fatigue characteristics, increasing the probability of initiating a crack or fracture to the printed part. For this reason, the direct use of as-produced parts in a finished product cannot be actualized, which presents a challenge. Post-processing of the AM parts is therefore required to smoothen the surface. This study analyzes chempolish (CP) and electropolish (EP) surface finishing techniques for post-processing AM stainless steel components CP has a great advantage in creating uniform, smooth surfaces regardless of size or part geometry EP creates an extremely smooth surface, which reduces the surface roughness to the sub-micrometer level.

    In this study, we also investigate nickel deposition on EP, CP, and as-built AM components using electroless nickel solutions. Electroless nickel plating is a method of alloy treatment designed to increase manufactured component’s hardness and surface resistance to the unrelenting environment. The electroless nickel plating process is more straightforward than its counterpart electroplating. We use low-phosphorus (2–5% P), medium-phosphorus (6–9% P), and high-phosphorus (10–13% P). These Ni deposition experiments were optimized using the L9more »Taguchi design of experiments (TDOE), which compromises the prosperous content in the solution, surface finish, plane of the geometry, and bath temperature. The pre- and post-processed surface of the AM parts was characterized by KEYENCE Digital MicroscopeVHX-7000 and Phenom XL Desktop SEM. The experimental results show that electroless nickel deposition produces uniform Ni coating on the additively manufactured components up to 20 μm per hour. Mechanical properties of as-built and Ni coated AM samples were analyzed by applying a standard 10 N scratch test. Nickel coated AM samples were up to two times scratch resistant compared to the as-built samples. This study suggests electroless nickel plating is a robust viable option for surface hardening and finishing AM components for various applications and operating conditions.« less

  4. 316L stainless steel (SS) to Al12Si aluminum alloy structures were processed, tailoring the compositionally graded interface on a SS 316 substrate using a directed energy deposition (DED)-based additive manufacturing (AM) process. Applying such a compositionally graded transition on bimetallic materials, especially joining two dissimilar metals, could avoid the mechanical property mismatch. This study's objective was to understand the processing parameters that influence the properties of AM processed SS 316L to Al12Si bimetallic structures. Two different approaches fabricated these bimetallic structures. The results showed no visible defects on the as-fabricated samples using 4 layers of Al-rich mixed composition as the transition section. The microstructural characterization showed a unique morphology in each section. Both cooling rate and compositional variations caused microstructural variation. FeAl, Fe2Al5, and FeAl3 intermetallic phases were formed at the compositionally graded transition section. After stress relief heat-treatment of SS 316L/Al12Si bimetallic samples, diffused intermetallic phases were seen at the compositionally graded transition. At the interface, as processed, bimetallic structures had a microhardness value of 834.2 ± 107.1 HV0.1, which is a result of the FeAl3 phase at the compositionally graded transition area. After heat-treatment, the microhardness value reduced to 578.7 ± 154.1 HV0.1 due to more Fe dominated FexAlymore »phase formation. The compression test results showed that the non-HT and HT SS 316L/Al12Si bimetallic structures had a similar maximum compressive strength of 299.4 ± 22.1 MPa and 270.1 ± 27.1 MPa, respectively.« less
  5. Purpose AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity. Design/methodology/approach The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity. Findings The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm 3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm 3 . The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producingmore »more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains. Practical implications The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications. Originality/value To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.« less