skip to main content


Title: Influence of powder type and binder saturation on binder jet 3D–printed and sintered Inconel 625 samples
Binder jet 3D printing combined with post-deposition sintering is a non-beam additive manufacturing (AM) method for the creation of complex metallic structures. Binder saturation and particle morphology are two important factors affecting the quality of printed parts. Here, we investigated the effects of binder saturation on dimension accuracy, porosity, microstructure and microhardness of nickel-based alloy 625 samples made of differently atomized powders. Argon gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet samples for a detailed comparative study. The optimal binder saturation for WA system is 60% to 70%, whereas for GA system the optimal is about 80%. Generally, GA samples achieved better overall quality than WA samples in terms of packing density, dimensional accuracy, sintered density, and microhardness. This difference is attributed mainly to the particle morphology including sphericity and roundness. The critical threshold for visible binder bleeding phenomenon in WA and GA systems is determined to be 120% and 140% binder saturation, respectively. Mechanisms for binder bleeding phenomenon at different saturation levels for WA and GA systems are discussed in detail. A pore evolution model is proposed to better understand the printing and sintering processes.  more » « less
Award ID(s):
1727676
NSF-PAR ID:
10291360
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The International Journal of Advanced Manufacturing Technology
ISSN:
0268-3768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shell printing is an advantageous binder jetting technique that prints only a thin shell of the intended object to enclose the loose powder in the core. In this study, powder packing in the shell and core was investigated for the first time. By examining the density and microstructure of the printed samples, powder packing was found to be different between the shell and core. In addition, the powder particle size and layer thickness were found to affect the powder packing in the shell and core differently. At a 200 µm layer thickness, for the 10 µm and 20 µm powders, the core was less dense than the shell and had a layered microstructure. At a 200 µm layer thickness, for the 70 µm powder, the core was denser and had a homogeneous microstructure. For the 20 µm powder, by reducing the layer thickness from 200 µm to 70 µm, the core became denser than the shell, and the microstructure of the core became homogeneous. The different results could be attributed to the different scenarios of particle rearrangement between the shell and core for powders of different particle sizes and at different layer thicknesses. Considering that the core was denser and more homogeneous than the shell when the proper layer thickness and powder particle size were selected, shell printing could be a promising method to tailor density and reduce anisotropy.

     
    more » « less
  2. Ni–Mn–Ga Heusler alloys are multifunctional materials that demonstrate macroscopic strain under an externally applied magnetic field through the motion of martensite twin boundaries within the microstructure. This study sought to comprehensively characterize the microstructural, mechanical, thermal, and magnetic properties near the solidus in binder-jet 3D printed 14M Ni50Mn30Ga20. Neutron diffraction data were analyzed to identify the martensite modulation and observe the grain size evolution in samples sintered at temperatures of 1080 °C and 1090 °C. Large clusters of high neutron-count pixels in samples sintered at 1090 °C were identified, suggesting Bragg diffraction of large grains (near doubling in size) compared to 1080 °C sintered samples. The grain size was confirmed through quantitative stereology of polished surfaces for differently sintered and heat-treated samples. Nanoindentation testing revealed a greater resistance to plasticity and a larger elastic modulus in 1090 °C sintered samples (relative density ~95%) compared to the samples sintered at 1080 °C (relative density ~80%). Martensitic transformation temperatures were lower for samples sintered at 1090 °C than 1080 °C, though a further heat treatment step could be added to tailor the transformation temperature. Microstructurally, twin variants ≤10 μm in width were observed and the presence of magnetic anisotropy was confirmed through magnetic force microscopy. This study indicates that a 10 °C sintering temperature difference can largely affect the microstructure and mechanical properties (including elastic modulus and hardness) while still allowing for the presence of magnetic twin variants in the resulting modulated martensite. 
    more » « less
  3. "Binder jetting is an economical and rapid additive manufacturing process that offers vast opportunities to combine a variety of materials, yielding interesting and useful properties. However, binder jetted parts, which can involve at least one hard and one soft material, can be more susceptible to corrosion and wear compared to conventional single alloy components produced by laser sintering or other high-temperature processes. This paper discusses the electroless nickel coating on 420 Stainless Steel and Bronze Binder-Jetted Composites(BJC). Electroless nickel, a well-known coating to provide high corrosion resistance and hardness, was attempted on BJC. To produce high-quality smooth electroless nickel coatings, we attempted the Taguchi Design of Experiments. Our design of experiment involved important factors, such as the surface preparation methodology prior to electroless nickel coating. During electroless nickel coating, we investigated the role of phosphorus content, temperature, and time in the production of smooth deposition. Optical microscopy was performed for qualitative and quantitative analysis. We also performed SEM to investigate the microstructure of different electroless coatings on BJC. Interestingly, all the combinations of parameters used in the electroless nickel coating produced different microstructures. We found that surface preparation was a critical factor in determining the smoothness of the film. We also showed that the dependent on the Ni solution’s phosphorus level and temperature. Our research ng insights for improving the usefulness of a wide variety of BJC by various coatings." 
    more » « less
  4. The objective of this study is to compare three different feedstock powders for the binder jetting process by characterizing their flowability and sinterability. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. Granulation is a promising material preparation method due to the potential high sinterability and flowability of the produced powder. However, no study has been made to systematically compare raw and granulated powders in terms of their flowing and sintering behaviors. This paper aims at filling this knowledge gap. Two raw powders (i.e., fine raw powder of 300 nm and coarse raw powder of 70 μm) and one granulated powder from spray freeze drying were compared. Different flowability metrics, including volumetric flow rate, mass flow rate, Hausner ratio, Carr index, and repose angle were measured. Different sinterability metrics, including sintered bulk density, volume shrinkage, and densification ratio were compared for all three powders. Results show that granulated powder achieved comparably high flowability to that of the coarse raw powder and also comparably high sinterability to that of the fine raw powder. Moreover, suitable metrics for the characterization of the sinterability and flowability for these three powders are recommended. This study suggests spray freeze drying produces high-quality feedstock powder for binder jetting process. 
    more » « less
  5. Objective of this study is to prepare the binder jetting feedstock powder by spray freeze drying and study the effects of its parameters on the powder properties. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. However, this process is limited by the relatively low density of the fabricated parts even after sintering. The main cause comes from the contradicting requirements of the particle size of the feedstock powder: a large particle size (>5 μm) is required for a high flowability while a small particle size (<1 μm) for a high sinterability. For the first time, a novel technology for the feedstock material preparation, called spray freeze drying, is investigated to address this contradiction. Using raw alumina nanopowder (100 nm), a full factorial design at two levels for two factors (spraying pressure and slurry feed rate) was formed to study their effects on the properties (i.e., granule size, flowability, and sinterability) of the obtained granulated powder. Results show that high pressure and small feed rate lead to small granule size. Compared with the raw powder, the flowability of the granulated powders was significantly increased, and the high sinterability was also maintained. This study proves that spray freeze granulation is a promising technology for the feedstock powder preparation of binder jetting additive manufacturing. 
    more » « less