skip to main content


Title: Galactic Extinction: How Many Novae Does It Hide and How Does It Affect the Galactic Nova Rate?
Abstract There is a long-standing discrepancy between the observed Galactic classical nova rate of ∼10 yr −1 and the predicted rate from Galactic models of ∼30–50 yr −1 . One explanation for this discrepancy is that many novae are hidden by interstellar extinction, but the degree to which dust can obscure novae is poorly constrained. We use newly available all-sky three-dimensional dust maps to compare the brightness and spatial distribution of known novae to that predicted from relatively simple models in which novae trace Galactic stellar mass. We find that only half (53%) of the novae are expected to be easily detectable ( g ≲ 15) with current all-sky optical surveys such as the All-Sky Automated Survey for Supernovae (ASAS-SN). This fraction is much lower than previously estimated, showing that dust does substantially affect nova detection in the optical. By comparing complementary survey results from the ASAS-SN, OGLE-IV, and Palomar Gattini IR surveys using our modeling, we find a tentative Galactic nova rate of ∼30 yr −1 , though this could be as high as ∼40 yr −1 , depending on the assumed distribution of novae within the Galaxy. These preliminary estimates will be improved in future work through more sophisticated modeling of nova detection in ASAS-SN and other surveys.  more » « less
Award ID(s):
1751874 1908570 1814440 1908952
NSF-PAR ID:
10319581
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the first estimate of the Galactic nova rate based on optical transient surveys covering the entire sky. Using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) and Gaia—the only two all-sky surveys to report classical nova candidates—we find 39 confirmed Galactic novae and 7 additional unconfirmed candidates discovered from 2019 to 2021, yielding a nova discovery rate of ≈14 yr−1. Using accurate Galactic stellar mass models and three-dimensional dust maps and incorporating realistic nova light curves, we have built a sophisticated Galactic nova model to estimate the fraction of Galactic novae discovered by these surveys over this time period. The observing capabilities of each survey are distinct: the high cadence of ASAS-SN makes it sensitive to fast novae, while the broad observing filter and high spatial resolution of Gaia make it more sensitive to highly reddened novae across the entire Galactic plane and bulge. Despite these differences, we find that ASAS-SN and Gaia give consistent Galactic nova rates, with a final joint nova rate of 26 ± 5 yr−1. This inferred nova rate is substantially lower than found by many other recent studies. Critically assessing the systematic uncertainties in the Galactic nova rate, we argue that the role of faint, fast-fading novae has likely been overestimated, but that subtle details in the operation of transient alert pipelines can have large, sometimes unappreciated effects on transient recovery efficiency. Our predicted nova rate can be directly tested with forthcoming red/near-infrared transient surveys in the southern hemisphere.

     
    more » « less
  2. Abstract The nova rate in the Milky Way remains largely uncertain, despite its vital importance in constraining models of Galactic chemical evolution as well as understanding progenitor channels for Type Ia supernovae. The rate has been previously estimated to be in the range of ≈10–300 yr −1 , either based on extrapolations from a handful of very bright optical novae or the nova rates in nearby galaxies; both methods are subject to debatable assumptions. The total discovery rate of optical novae remains much smaller (≈5–10 yr −1 ) than these estimates, even with the advent of all-sky optical time-domain surveys. Here, we present a systematic sample of 12 spectroscopically confirmed Galactic novae detected in the first 17 months of Palomar Gattini-IR (PGIR), a wide-field near-infrared time-domain survey. Operating in the J band (≈1.2 μ m), which is significantly less affected by dust extinction compared to optical bands, the extinction distribution of the PGIR sample is highly skewed to a large extinction values (>50% of events obscured by A V ≳ 5 mag). Using recent estimates for the distribution of Galactic mass and dust, we show that the extinction distribution of the PGIR sample is commensurate with dust models. The PGIR extinction distribution is inconsistent with that reported in previous optical searches (null-hypothesis probability <0.01%), suggesting that a large population of highly obscured novae have been systematically missed in previous optical searches. We perform the first quantitative simulation of a 3 π time-domain survey to estimate the Galactic nova rate using PGIR, and derive a rate of ≈ 43.7 − 8.7 + 19.5 yr −1 . Our results suggest that all-sky near-infrared time-domain surveys are well poised to uncover the Galactic nova population. 
    more » « less
  3. ABSTRACT

    Accurate determination of the rates of nova eruptions in different kinds of galaxies gives us strong constraints on those galaxies’ underlying white dwarf and binary populations, and those stars’ spatial distributions. Until 2016, limitations inherent in ground-based surveys of external galaxies – and dust extinction in the Milky Way – significantly hampered the determination of those rates and how much they differ between different types of galaxies. Infrared Galactic surveys and dense cadence Hubble Space Telescope(HST)-based surveys are overcoming these limitations, leading to sharply increased nova-in-galaxy rates relative to those previously claimed. Here, we present 14 nova candidates that were serendipitously observed during a year-long HST survey of the massive spiral galaxy M51 (the ‘Whirlpool Galaxy’). We use simulations based on observed nova light curves to model the incompleteness of the HST survey in unprecedented detail, determining a nova detection efficiency ϵ = 20.3 per cent. The survey’s M51 area coverage, combined with ϵ, indicates a conservative M51 nova rate of $172^{+46}_{-37}$ novae yr−1, corresponding to a luminosity-specific nova rate (LSNR) of $\sim\!10.4^{+2.8}_{-2.2}$ novae yr−1/1010L⊙,K. Both these rates are approximately an order of magnitude higher than those estimated by ground-based studies, contradicting claims of universal low nova rates in all types of galaxies determined by low cadence, ground-based surveys. They demonstrate that, contrary to theoretical models, the HST-determined LSNR in a giant elliptical galaxy (M87) and a giant spiral galaxy (M51) likely do not differ by an order of magnitude or more, and may in fact be quite similar.

     
    more » « less
  4. ABSTRACT

    We present the volumetric rates and luminosity functions (LFs) of Type Ia supernovae (SNe Ia) from the V-band All-Sky Automated Survey for Supernovae (ASAS-SN) catalogues spanning discovery dates from UTC 2014 January 26 to UTC 2017 December 29. Our standard sample consists of 404 SNe Ia with $m_{\mathrm{{\it V},peak}} \lt 17\, \mathrm{mag}$ and Galactic latitude |b| > 15°. Our results are both statistically more precise and systematically more robust than previous studies due to the large sample size and high spectroscopic completeness. We make completeness corrections based on both the apparent and absolute magnitudes by simulating the detection of SNe Ia in ASAS-SN light curves. We find a total volumetric rate for all subtypes of $R_{\mathrm{tot}} = 2.28^{+0.20}_{-0.20} \times 10^{4}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$ for $M_{\mathrm{{\it V},peak}} \lt -16.5\, \mathrm{mag}$ ($R_{\mathrm{tot}} = 1.91^{+0.12}_{-0.12} \times 10^{4}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$ for $M_{\mathrm{{\it V},peak}} \lt -17.5\, \mathrm{mag}$) at the median redshift of our sample, zmed = 0.024. This is in agreement (1σ) with the local volumetric rates found by previous studies. We also compile LFs for the entire sample as well as for subtypes of SNe Ia for the first time. The major subtypes with more than one SN include Ia-91bg, Ia-91T, Ia-CSM, and Ia-03fg with total rates of $R_{\mathrm{Ia-91bg}} = 1.4^{+0.5}_{-0.5} \times 10^{3}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, $R_{\mathrm{Ia-91T}} = 8.5^{+1.6}_{-1.7} \times 10^{2}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, $R_{\mathrm{Ia-CSM}} = 10^{+7}_{-7}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, and $R_{\mathrm{Ia-03fg}} = 30^{+20}_{-20}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, respectively. We estimate a mean host extinction of $E(V-r) \approx 0.2\, \mathrm{mag}$ based on the shift between our V band and the Zwicky Transient Facility r-band LFs.

     
    more » « less
  5. We present optical photometry and spectroscopy of the Type II supernova ASASSN-14jb, together with Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) integral field observations of its host galaxy and a nebular-phase spectrum. This supernova, in the nearby galaxy ESO 467-G051 ( z  = 0.006), was discovered and followed-up by the all-sky automated survey for supernovae (ASAS-SN). We obtained well-sampled las cumbres network (LCOGTN) B V g r i and Swift w 2 m 1 w 1 u b v optical, near-UV/optical light curves, and several optical spectra in the early photospheric phases. The transient ASASSN-14jb exploded ∼2 kpc above the star-forming disk of ESO 467-G051, an edge-on disk galaxy. The large projected distance from the disk of the supernova position and the non-detection of any H II region in a 1.4 kpc radius in projection are in conflict with the standard environment of core-collapse supernova progenitors and suggests the possible scenario that the progenitor received a kick in a binary interaction. We present analysis of the optical light curves and spectra, from which we derived a distance of 25 ± 2 Mpc using state-of-the-art empirical methods for Type II SNe, physical properties of the SN explosion ( 56 Ni mass, explosion energy, and ejected mass), and properties of the progenitor; namely the progenitor radius, mass, and metallicity. Our analysis yields a 56 Ni mass of 0.0210  ±  0.0025  M ⊙ , an explosion energy of ≈0.25 × 10 51 ergs, and an ejected mass of ≈6  M ⊙ . We also constrained the progenitor radius to be R *  = 580  ±  28  R ⊙ which seems to be consistent with the sub-Solar metallicity of 0.3  ±  0.1  Z ⊙ derived from the supernova Fe II λ 5018 line. The nebular spectrum constrains strongly the progenitor mass to be in the range 10–12 M ⊙ . From the Spitzer data archive we detect ASASSN-14jb ≈330 days past explosion and we derived a total dust mass of 10 −4   M ⊙ from the 3.6 μ m and 4.5 μ m photometry. Using the F U V , N U V , B V g r i , K s , 3.6 μ m, and 4.5 μ m total magnitudes for the host galaxy, we fit stellar population synthesis models, which give an estimate of M *  ≈ 1 × 10 9   M ⊙ , an age of 3.2 Gyr, and a SFR ≈0.07  M ⊙ yr −1 . We also discuss the low oxygen abundance of the host galaxy derived from the MUSE data, having an average of 12 + log(O/H) = 8.27 +0.16 −0.20 using the O 3 N 2 diagnostic with strong line methods. We compared it with the supernova spectra, which is also consistent with a sub-Solar metallicity progenitor. Following recent observations of extraplanar H II regions in nearby edge-on galaxies, we derived the metallicity offset from the disk, being positive, but consistent with zero at 2 σ , suggesting enrichment from disk outflows. We finally discuss the possible scenarios for the unusual environment for ASASSN-14jb and conclude that either the in-situ star formation or runaway scenario would imply a low-mass progenitor, agreeing with our estimate from the supernova nebular spectrum. Regardless of the true origin of ASASSN-14jb, we show that the detailed study of the environment roughly agree with the stronger constraints from the observation of the transient. 
    more » « less