Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, π΅ β π security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%.
more »
« less
Power Grid Cascading Failure Prediction Based on Transformer
Smart grids can be vulnerable to attacks and accidents, and any initial failures in smart grids can grow to a large blackout because of cascading failure. Because of the importance of smart grids in modern society, it is crucial to protect them against cascading failures. Simulation of cascading failures can help identify the most vulnerable transmission lines and guide prioritization in protection planning, hence, it is an effective approach to protect smart grids from cascading failures. However, due to the enormous number of ways that the smart grids may fail initially, it is infeasible to simulate cascading failures at a large scale nor identify the most vulnerable lines efficiently. In this paper, we aim at 1) developing a method to run cascading failure simulations at scale and 2) building simplified, diffusion based cascading failure models to support efficient and theoretically bounded identification of most vulnerable lines. The goals are achieved by first constructing a novel connection between cascading failures and natural languages, and then adapting the powerful transformer model in NLP to learn from cascading failure data. Our trained transformer models have good accuracy in predicting the total number of failed lines in a cascade and identifying the most vulnerable lines. We also constructed independent cascade (IC) diffusion models based on the attention matrices of the transformer models, to support efficient vulnerability analysis with performance bounds.
more »
« less
- Award ID(s):
- 1948550
- PAR ID:
- 10319642
- Date Published:
- Journal Name:
- Lecture notes in computer science
- Volume:
- 13116
- ISSN:
- 0302-9743
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex systems such as smart cities and smart power grids rely heavily on their interdependent components. The failure of a component in one network may lead to the failure of the supported component in another network. Components which support a large number of interdependent components may be more vulnerable to attacks and failures. In this paper, we study the robustness of two interdependent networks under node failures. By modeling each network using a random geometric graph (RGG), we study conditions for the percolation of two interdependent RGGs after in-homogeneous node failures. We derive analytical bounds on the interdependent degree thresholds (k 1 ,k 2 ), such that the interdependent RGGs percolate after removing nodes in G i that support more than k j nodes in G j (βi, j β {1, 2}, i β j). We verify the bounds using numerical simulation, and show that there is a tradeoff between k 1 and k 2 for maintaining percolation after the failures.more » « less
-
Adams, Benjamin; Griffin, Amy L; Scheider, Simon; McKenzie, Grant (Ed.)During a natural disaster such as flooding, the failure of a single asset in the complex and interconnected web of critical urban infrastructure can trigger a cascade of failures within and across multiple systems with potentially life-threatening consequences. To help emergency management effectively and efficiently assess such failures, we design the Utility Connection Ontology Design Pattern to represent utility services and model connections within and across those services. The pattern is encoded as an OWL ontology and instantiated with utility data in a geospatial knowledge graph. We demonstrate how it facilitates reasoning to identify cascading service failures due to flooding for producing maps and other summaries for situational awareness.more » « less
-
Home area networks (HANs) are the most vulnerable part of smart grids since they are not directly controlled by utilities. Device authentication is one of most important mechanisms to protect the security of smart grid-enabled HANs (SG-HANs). In this paper, we propose a situation-aware scheme for efficient device authentication in SG-HANs. The proposed scheme utilizes the security risk information assessed by the smart home system with a situational awareness feature. A suitable authentication protocol with adequate security protection and computational and communication complexity is then selected based on the assessed security risk level. A protocol design of the proposed scheme considering two security risk levels is presented in the paper. The security of the design is verified by using both formal verification and informal security analysis. Our performance analysis demonstrates that the proposed scheme is efficient in terms of computational and communication costs.more » « less
-
The widespread application of phasor measurement units has improved grid operational reliability. However, this has increased the risk of cyber threats such as false data injection attack that mislead time-critical measurements, which may lead to incorrect operator actions. While a single incorrect operator action might not result in a cascading failure, a series of actions impacting critical lines and transformers, combined with pre-existing faults or scheduled maintenance, might lead to widespread outages. To prevent cascading failures, controlled islanding strategies are traditionally implemented. However, islanding is effective only when the received data are trustworthy. This paper investigates two multi-objective controlled islanding strategies to accommodate data uncertainties under scenarios of lack of or partial knowledge of false data injection attacks. When attack information is not available, the optimization problem maximizes island observability using a minimum number of phasor measurement units for a more accurate state estimation. When partial attack information is available, vulnerable phasor measurement units are isolated to a smaller island to minimize the impacts of attacks. Additional objectives ensure steady-state and transient-state stability of the islands. Simulations are performed on 200-bus, 500-bus, and 2000-bus systems.more » « less