skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Knowledge in the Making: What Engineering Students are Learning in Makerspaces
Extensive funding and resources have been allocated to support the integration of makerspaces in undergraduate engineering programs and, with greater investment, there is growing likelihood that engineering students are expected to use the spaces as part of their coursework. The investment in and placement of the spaces within colleges of engineering, specifically, provide warrant for anticipating that engineering faculty members are assigning projects that require students to engage in the space to complete the assignments.  more » « less
Award ID(s):
1902829
PAR ID:
10319670
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Makerspaces are a growing trend in engineering and STEM (Science, Technology, Engineering and Math) education at both the university and K-12 levels. These spaces which, in theory, are characterized by a community of likeminded individuals interested in digital fabrication and innovative design, are argued to provide opportunities to foster the skills sets critical to the next generation of engineers and scientists. However, spaces for making are not new to the engineering curriculum as many engineering programs have well-established machine shops orbproject labs that students utilize to complete course projects. In this work-in-progress exploratory study, the authors evaluated early undergraduate students’ perceptions of two contrasting spaces, a contemporary makerspace and a traditional engineering shop. As part of an Introduction to Engineering course, students were asked to visit the two campus spaces, identify important equipment and policies they noticed in each space, and describe their perception of how the spaces were similar or different. Based on our initial findings, we speculate that access and safety issues in engineering shops may limit their use by early year engineering undergraduates. Alternatively, digital fabrication technologies and community culture in makerspaces can provide access to a hands-on prototyping and collaborative learning environment for early year engineering students. 
    more » « less
  2. The creation of student-centered spaces for making and prototyping continues to be a growing trend in higher education. These spaces are especially relevant in engineering education as they provide opportunities for engineering students to engage in authentic and collaborative problemsolving activities that can develop students’ 21st-century skills [1–3]. Principles of constructionist learning theory, which promote knowledge creation through development of a physical product [4,5], may be applied to support learning within these spaces. Beyond the construction of objects, this learning theory emphasizes a learning culture where teachers serve as guides to collaborative and student-driven learning [6]. This research seeks to understand how constructionism's learning principles are integrated into an engineering prototyping center (EPC) at a large western university. Further, we explore how these principles may support engineering student development within these spaces and identify a qualitative coding scheme for future research. Thematic analysis of semi-structured interviews with faculty, staff, and students involved with the EPC suggests that the construction of physical prototypes within this space allows for the translation of abstract concepts to concrete experiences and the development of iterative design skills. Further, the data suggests that staff play an essential role in creating a learning culture aligned with constructionist learning principles. This culture supports staff in guiding student learning, fostering a collaborative environment, and promoting students’ lifelong learning skills. Data collected within this exploratory study suggest that constructionism's learning principles can play a central role in supporting the development of engineering students in an EPC. 
    more » « less
  3. The motivation for this exploratory qualitative study is to understand what a culture of belonging may look like across six engineering education making spaces in institutions of higher education in the U.S. The research question for this study was: In what ways are the management, instructors, and staff operating engineering education making spaces influencing a culture of belonging (if any) for engineering students? We examined the transcripts of semi-structured interviews of 49 faculty members and 29 members of management/staff of making spaces, using thematic coding. From the data, we identified four themes that described the culture of belonging being created in these six engineering making spaces: (a) a ‘closed loop’ culture for inclusion, diversity, equity, and access; (b) a ‘transactional, dichotomous’ culture; (c) a ‘band-aid, masquerading’ culture; (d) a potential ‘boundary-crossing’ culture. Our primary conclusion was that created cultures in engineering making spaces are extensions of normative cultures found in traditional engineering classrooms. Additionally, while making spaces were attempting to change this culture in their physical infrastructures, it was deemed that the space leadership needs to expand hiring strategies, the nature of making activities, the ambient/physical appearance of the space, disciplines, and required expertise, to create a truly inclusive and equitable culture of belonging. 
    more » « less
  4. Previous research in engineering education has identified the characteristics and behaviors associated with being an engineer, including aspects such as dress norms, professionalism, and standards. These studies have also explored the reasons why historically marginalized students may experience a sense of alienation from the engineering field. In the realm of engineering, learning how to become an engineer is shaped through the hidden curriculum, everyday interactions and the cognitive dynamics that are involved in those interactions. These cognitive dynamics are called “scripts” and they involve the schemas and frames of reference that build one’s engineering identity. As individuals engage with the field, they develop scripts by adopting the behaviors and traits that are recognized as traditional characteristics of engineers by their mentors, professors, peers, industry leaders, and others within the engineering community. Young engineers learn to employ the language, phrases, practices, skills, values, and beliefs that signify their acquisition of the social constructs associated with the engineering world while allowing them to acculturate within their respected field . Moreover, engineering scripts often center around whiteness – a socially constructed formation that functions as a system of social control. Some examples of whiteness include the racialization of students of color and their portrayal as incapable of performing in engineering (i.e., deficit ideologies), the idea that engineering knowledge is only constructed in English (i.e., language subtraction), or the perception that people are selected to engineering spaces just based on ability (i.e., meritocracy). In this paper, we analyze current literature in engineering education research to argue that scripts of whiteness in engineering are detrimental for women and people of color because they keep racialization in engineering spaces in perpetual motion. We posit that individuals in engineering spaces are not only conditioned to scripts of whiteness but also become the bearers of racialized hierarchical classifications to maintain power and sustain systemic barriers in engineering education. Guided by the questions: (1) how is whiteness interpreted and manifested in engineering and (2) what common scripts of whiteness are prevalent in engineering spaces, a systemic review of the literature was performed. Given that the research on whiteness in engineering is not very extensive, the literature review was not limited to journals in engineering education research but also those published in journals such as in higher education, science education, and counseling psychology. We argue that the lack of diversity in engineering is a direct outcome of a system that perpetuates white supremacy to actively keep students of color away, and we suggest that engineering education research cannot move forward toward racial equity unless these scripts are identified and challenged rather than being considered part of the “engineering culture.” Future work will explore how these scripts are developed, maintained, and promoted in engineering. 
    more » « less
  5. One of the major changes in the higher education ecosystem over the last decade has been a rise in the availability of education-based software products, including education-based web-pages and web-services. Globally the investment in education-based startups in 2017 was $9.5B which surged to $18.7B in 2019 [1]. The COVID-19 pandemic further fueled record investment in this sector, with the US seeing $2.2B invested in 130 startups in 2020, up from $1.7B in 2019 and $1.4B in 2018 (see [2] and [3]). Early indicators show that 2021 will again see further increases [4]. While the majority (92%) of these investments are aimed at consumer and corporate sectors, there is potential for the innovations developed to diffuse into both the P-12 and higher education spaces [5]. What is evident from the investment numbers is that an integration of learning technologies specifically into higher education is progressing at a relatively slower pace [5]. It is the goal of this work-in-progress to identify some of the reasons for this slower progress. Our hypothesis is that, while some of these reasons may be obvious, there are also more subtle and/or counterintuitive reasons for the reduced interest in higher education. The motivation and need for the proposed study grew out of an ongoing NSF RED project where we endeavor to fuse the concept of convergence, loosely defined as “deep integration,” into our undergraduate engineering curriculum. Increasingly software and data systems at colleges and universities, and the affordances they do and do not offer, are integral to university structures. If the respective software systems do not support certain activities and functions then the programs are simply not useful to the faculty [6]. Additionally, any subset of systems needs to seamlessly integrate to form a coherent and usable learning support system that faculty, students, and staff can use without issue and/or barrier. The goal of the proposed activity within our grant is, thus, to build structures to collect, analyze, and display data in support of developing skills in addressing convergent problems. 
    more » « less